Metamath Proof Explorer


Theorem isf32lem8

Description: Lemma for isfin3-2 . K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014)

Ref Expression
Hypotheses isf32lem.a
|- ( ph -> F : _om --> ~P G )
isf32lem.b
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) )
isf32lem.c
|- ( ph -> -. |^| ran F e. ran F )
isf32lem.d
|- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) }
isf32lem.e
|- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) )
isf32lem.f
|- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J )
Assertion isf32lem8
|- ( ( ph /\ A e. _om ) -> ( K ` A ) C_ G )

Proof

Step Hyp Ref Expression
1 isf32lem.a
 |-  ( ph -> F : _om --> ~P G )
2 isf32lem.b
 |-  ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) )
3 isf32lem.c
 |-  ( ph -> -. |^| ran F e. ran F )
4 isf32lem.d
 |-  S = { y e. _om | ( F ` suc y ) C. ( F ` y ) }
5 isf32lem.e
 |-  J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) )
6 isf32lem.f
 |-  K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J )
7 6 fveq1i
 |-  ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A )
8 4 ssrab3
 |-  S C_ _om
9 1 2 3 4 isf32lem5
 |-  ( ph -> -. S e. Fin )
10 5 fin23lem22
 |-  ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S )
11 8 9 10 sylancr
 |-  ( ph -> J : _om -1-1-onto-> S )
12 f1of
 |-  ( J : _om -1-1-onto-> S -> J : _om --> S )
13 11 12 syl
 |-  ( ph -> J : _om --> S )
14 fvco3
 |-  ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) )
15 13 14 sylan
 |-  ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) )
16 13 ffvelrnda
 |-  ( ( ph /\ A e. _om ) -> ( J ` A ) e. S )
17 fveq2
 |-  ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) )
18 suceq
 |-  ( w = ( J ` A ) -> suc w = suc ( J ` A ) )
19 18 fveq2d
 |-  ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) )
20 17 19 difeq12d
 |-  ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
21 eqid
 |-  ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) )
22 fvex
 |-  ( F ` ( J ` A ) ) e. _V
23 22 difexi
 |-  ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V
24 20 21 23 fvmpt
 |-  ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
25 16 24 syl
 |-  ( ( ph /\ A e. _om ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
26 15 25 eqtrd
 |-  ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
27 7 26 eqtrid
 |-  ( ( ph /\ A e. _om ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) )
28 1 adantr
 |-  ( ( ph /\ A e. _om ) -> F : _om --> ~P G )
29 8 16 sselid
 |-  ( ( ph /\ A e. _om ) -> ( J ` A ) e. _om )
30 28 29 ffvelrnd
 |-  ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) e. ~P G )
31 30 elpwid
 |-  ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) C_ G )
32 31 ssdifssd
 |-  ( ( ph /\ A e. _om ) -> ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) C_ G )
33 27 32 eqsstrd
 |-  ( ( ph /\ A e. _om ) -> ( K ` A ) C_ G )