Step |
Hyp |
Ref |
Expression |
1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
4 |
|
isf32lem.d |
|- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
5 |
|
isf32lem.e |
|- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
6 |
|
isf32lem.f |
|- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
7 |
6
|
fveq1i |
|- ( K ` A ) = ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) |
8 |
4
|
ssrab3 |
|- S C_ _om |
9 |
1 2 3 4
|
isf32lem5 |
|- ( ph -> -. S e. Fin ) |
10 |
5
|
fin23lem22 |
|- ( ( S C_ _om /\ -. S e. Fin ) -> J : _om -1-1-onto-> S ) |
11 |
8 9 10
|
sylancr |
|- ( ph -> J : _om -1-1-onto-> S ) |
12 |
|
f1of |
|- ( J : _om -1-1-onto-> S -> J : _om --> S ) |
13 |
11 12
|
syl |
|- ( ph -> J : _om --> S ) |
14 |
|
fvco3 |
|- ( ( J : _om --> S /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
15 |
13 14
|
sylan |
|- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) ) |
16 |
13
|
ffvelrnda |
|- ( ( ph /\ A e. _om ) -> ( J ` A ) e. S ) |
17 |
|
fveq2 |
|- ( w = ( J ` A ) -> ( F ` w ) = ( F ` ( J ` A ) ) ) |
18 |
|
suceq |
|- ( w = ( J ` A ) -> suc w = suc ( J ` A ) ) |
19 |
18
|
fveq2d |
|- ( w = ( J ` A ) -> ( F ` suc w ) = ( F ` suc ( J ` A ) ) ) |
20 |
17 19
|
difeq12d |
|- ( w = ( J ` A ) -> ( ( F ` w ) \ ( F ` suc w ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
21 |
|
eqid |
|- ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) = ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) |
22 |
|
fvex |
|- ( F ` ( J ` A ) ) e. _V |
23 |
22
|
difexi |
|- ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) e. _V |
24 |
20 21 23
|
fvmpt |
|- ( ( J ` A ) e. S -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
25 |
16 24
|
syl |
|- ( ( ph /\ A e. _om ) -> ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) ` ( J ` A ) ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
26 |
15 25
|
eqtrd |
|- ( ( ph /\ A e. _om ) -> ( ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
27 |
7 26
|
eqtrid |
|- ( ( ph /\ A e. _om ) -> ( K ` A ) = ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) ) |
28 |
1
|
adantr |
|- ( ( ph /\ A e. _om ) -> F : _om --> ~P G ) |
29 |
8 16
|
sselid |
|- ( ( ph /\ A e. _om ) -> ( J ` A ) e. _om ) |
30 |
28 29
|
ffvelrnd |
|- ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) e. ~P G ) |
31 |
30
|
elpwid |
|- ( ( ph /\ A e. _om ) -> ( F ` ( J ` A ) ) C_ G ) |
32 |
31
|
ssdifssd |
|- ( ( ph /\ A e. _om ) -> ( ( F ` ( J ` A ) ) \ ( F ` suc ( J ` A ) ) ) C_ G ) |
33 |
27 32
|
eqsstrd |
|- ( ( ph /\ A e. _om ) -> ( K ` A ) C_ G ) |