| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isf32lem.a |
|- ( ph -> F : _om --> ~P G ) |
| 2 |
|
isf32lem.b |
|- ( ph -> A. x e. _om ( F ` suc x ) C_ ( F ` x ) ) |
| 3 |
|
isf32lem.c |
|- ( ph -> -. |^| ran F e. ran F ) |
| 4 |
|
isf32lem.d |
|- S = { y e. _om | ( F ` suc y ) C. ( F ` y ) } |
| 5 |
|
isf32lem.e |
|- J = ( u e. _om |-> ( iota_ v e. S ( v i^i S ) ~~ u ) ) |
| 6 |
|
isf32lem.f |
|- K = ( ( w e. S |-> ( ( F ` w ) \ ( F ` suc w ) ) ) o. J ) |
| 7 |
|
isf32lem.g |
|- L = ( t e. G |-> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) ) |
| 8 |
|
ssab2 |
|- { s | ( s e. _om /\ t e. ( K ` s ) ) } C_ _om |
| 9 |
|
iotacl |
|- ( E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. { s | ( s e. _om /\ t e. ( K ` s ) ) } ) |
| 10 |
8 9
|
sselid |
|- ( E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 11 |
|
iotanul |
|- ( -. E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) = (/) ) |
| 12 |
|
peano1 |
|- (/) e. _om |
| 13 |
11 12
|
eqeltrdi |
|- ( -. E! s ( s e. _om /\ t e. ( K ` s ) ) -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 14 |
10 13
|
pm2.61i |
|- ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om |
| 15 |
14
|
a1i |
|- ( t e. G -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _om ) |
| 16 |
7 15
|
fmpti |
|- L : G --> _om |
| 17 |
16
|
a1i |
|- ( ph -> L : G --> _om ) |
| 18 |
1 2 3 4 5 6
|
isf32lem6 |
|- ( ( ph /\ a e. _om ) -> ( K ` a ) =/= (/) ) |
| 19 |
|
n0 |
|- ( ( K ` a ) =/= (/) <-> E. b b e. ( K ` a ) ) |
| 20 |
18 19
|
sylib |
|- ( ( ph /\ a e. _om ) -> E. b b e. ( K ` a ) ) |
| 21 |
1 2 3 4 5 6
|
isf32lem8 |
|- ( ( ph /\ a e. _om ) -> ( K ` a ) C_ G ) |
| 22 |
21
|
sselda |
|- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> b e. G ) |
| 23 |
|
eleq1w |
|- ( t = b -> ( t e. ( K ` s ) <-> b e. ( K ` s ) ) ) |
| 24 |
23
|
anbi2d |
|- ( t = b -> ( ( s e. _om /\ t e. ( K ` s ) ) <-> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 25 |
24
|
iotabidv |
|- ( t = b -> ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 26 |
|
iotaex |
|- ( iota s ( s e. _om /\ t e. ( K ` s ) ) ) e. _V |
| 27 |
25 7 26
|
fvmpt3i |
|- ( b e. G -> ( L ` b ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 28 |
22 27
|
syl |
|- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( L ` b ) = ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 29 |
|
simp1r |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> b e. ( K ` a ) ) |
| 30 |
|
simpl1 |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> ph ) |
| 31 |
|
simpr |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> s =/= a ) |
| 32 |
31
|
necomd |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> a =/= s ) |
| 33 |
|
simpl2 |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> a e. _om ) |
| 34 |
|
simpl3 |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> s e. _om ) |
| 35 |
1 2 3 4 5 6
|
isf32lem7 |
|- ( ( ( ph /\ a =/= s ) /\ ( a e. _om /\ s e. _om ) ) -> ( ( K ` a ) i^i ( K ` s ) ) = (/) ) |
| 36 |
30 32 33 34 35
|
syl22anc |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> ( ( K ` a ) i^i ( K ` s ) ) = (/) ) |
| 37 |
|
disj1 |
|- ( ( ( K ` a ) i^i ( K ` s ) ) = (/) <-> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
| 38 |
36 37
|
sylib |
|- ( ( ( ph /\ a e. _om /\ s e. _om ) /\ s =/= a ) -> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
| 39 |
38
|
ex |
|- ( ( ph /\ a e. _om /\ s e. _om ) -> ( s =/= a -> A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) ) |
| 40 |
|
sp |
|- ( A. b ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) -> ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) |
| 41 |
39 40
|
syl6 |
|- ( ( ph /\ a e. _om /\ s e. _om ) -> ( s =/= a -> ( b e. ( K ` a ) -> -. b e. ( K ` s ) ) ) ) |
| 42 |
41
|
com23 |
|- ( ( ph /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` a ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) ) |
| 43 |
42
|
3adant1r |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` a ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) ) |
| 44 |
29 43
|
mpd |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( s =/= a -> -. b e. ( K ` s ) ) ) |
| 45 |
44
|
necon4ad |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om /\ s e. _om ) -> ( b e. ( K ` s ) -> s = a ) ) |
| 46 |
45
|
3expia |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( s e. _om -> ( b e. ( K ` s ) -> s = a ) ) ) |
| 47 |
46
|
impd |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( ( s e. _om /\ b e. ( K ` s ) ) -> s = a ) ) |
| 48 |
|
eleq1w |
|- ( s = a -> ( s e. _om <-> a e. _om ) ) |
| 49 |
|
fveq2 |
|- ( s = a -> ( K ` s ) = ( K ` a ) ) |
| 50 |
49
|
eleq2d |
|- ( s = a -> ( b e. ( K ` s ) <-> b e. ( K ` a ) ) ) |
| 51 |
48 50
|
anbi12d |
|- ( s = a -> ( ( s e. _om /\ b e. ( K ` s ) ) <-> ( a e. _om /\ b e. ( K ` a ) ) ) ) |
| 52 |
51
|
biimprcd |
|- ( ( a e. _om /\ b e. ( K ` a ) ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 53 |
52
|
ancoms |
|- ( ( b e. ( K ` a ) /\ a e. _om ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 54 |
53
|
adantll |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( s = a -> ( s e. _om /\ b e. ( K ` s ) ) ) ) |
| 55 |
47 54
|
impbid |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( ( s e. _om /\ b e. ( K ` s ) ) <-> s = a ) ) |
| 56 |
55
|
iota5 |
|- ( ( ( ph /\ b e. ( K ` a ) ) /\ a e. _om ) -> ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) = a ) |
| 57 |
56
|
an32s |
|- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( iota s ( s e. _om /\ b e. ( K ` s ) ) ) = a ) |
| 58 |
28 57
|
eqtr2d |
|- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> a = ( L ` b ) ) |
| 59 |
22 58
|
jca |
|- ( ( ( ph /\ a e. _om ) /\ b e. ( K ` a ) ) -> ( b e. G /\ a = ( L ` b ) ) ) |
| 60 |
59
|
ex |
|- ( ( ph /\ a e. _om ) -> ( b e. ( K ` a ) -> ( b e. G /\ a = ( L ` b ) ) ) ) |
| 61 |
60
|
eximdv |
|- ( ( ph /\ a e. _om ) -> ( E. b b e. ( K ` a ) -> E. b ( b e. G /\ a = ( L ` b ) ) ) ) |
| 62 |
|
df-rex |
|- ( E. b e. G a = ( L ` b ) <-> E. b ( b e. G /\ a = ( L ` b ) ) ) |
| 63 |
61 62
|
imbitrrdi |
|- ( ( ph /\ a e. _om ) -> ( E. b b e. ( K ` a ) -> E. b e. G a = ( L ` b ) ) ) |
| 64 |
20 63
|
mpd |
|- ( ( ph /\ a e. _om ) -> E. b e. G a = ( L ` b ) ) |
| 65 |
64
|
ralrimiva |
|- ( ph -> A. a e. _om E. b e. G a = ( L ` b ) ) |
| 66 |
|
dffo3 |
|- ( L : G -onto-> _om <-> ( L : G --> _om /\ A. a e. _om E. b e. G a = ( L ` b ) ) ) |
| 67 |
17 65 66
|
sylanbrc |
|- ( ph -> L : G -onto-> _om ) |