| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfin32i |  |-  ( f e. Fin3 -> -. _om ~<_* f ) | 
						
							| 2 |  | fveq1 |  |-  ( a = b -> ( a ` suc x ) = ( b ` suc x ) ) | 
						
							| 3 |  | fveq1 |  |-  ( a = b -> ( a ` x ) = ( b ` x ) ) | 
						
							| 4 | 2 3 | sseq12d |  |-  ( a = b -> ( ( a ` suc x ) C_ ( a ` x ) <-> ( b ` suc x ) C_ ( b ` x ) ) ) | 
						
							| 5 | 4 | ralbidv |  |-  ( a = b -> ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) <-> A. x e. _om ( b ` suc x ) C_ ( b ` x ) ) ) | 
						
							| 6 |  | rneq |  |-  ( a = b -> ran a = ran b ) | 
						
							| 7 | 6 | inteqd |  |-  ( a = b -> |^| ran a = |^| ran b ) | 
						
							| 8 | 7 6 | eleq12d |  |-  ( a = b -> ( |^| ran a e. ran a <-> |^| ran b e. ran b ) ) | 
						
							| 9 | 5 8 | imbi12d |  |-  ( a = b -> ( ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) | 
						
							| 10 | 9 | cbvralvw |  |-  ( A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) | 
						
							| 11 |  | pweq |  |-  ( g = y -> ~P g = ~P y ) | 
						
							| 12 | 11 | oveq1d |  |-  ( g = y -> ( ~P g ^m _om ) = ( ~P y ^m _om ) ) | 
						
							| 13 | 12 | raleqdv |  |-  ( g = y -> ( A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) <-> A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) | 
						
							| 14 | 10 13 | bitrid |  |-  ( g = y -> ( A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) <-> A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) ) ) | 
						
							| 15 | 14 | cbvabv |  |-  { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } = { y | A. b e. ( ~P y ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) } | 
						
							| 16 | 15 | isf32lem12 |  |-  ( f e. Fin3 -> ( -. _om ~<_* f -> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) ) | 
						
							| 17 | 1 16 | mpd |  |-  ( f e. Fin3 -> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) | 
						
							| 18 | 10 | abbii |  |-  { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } = { g | A. b e. ( ~P g ^m _om ) ( A. x e. _om ( b ` suc x ) C_ ( b ` x ) -> |^| ran b e. ran b ) } | 
						
							| 19 | 18 | fin23lem41 |  |-  ( f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } -> f e. Fin3 ) | 
						
							| 20 | 17 19 | impbii |  |-  ( f e. Fin3 <-> f e. { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } ) | 
						
							| 21 | 20 | eqriv |  |-  Fin3 = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) } |