Step |
Hyp |
Ref |
Expression |
1 |
|
compss.a |
|- F = ( x e. ~P A |-> ( A \ x ) ) |
2 |
1
|
isf34lem2 |
|- ( A e. Fin3 -> F : ~P A --> ~P A ) |
3 |
2
|
adantr |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> F : ~P A --> ~P A ) |
4 |
3
|
3adant3 |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> F : ~P A --> ~P A ) |
5 |
4
|
ffnd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> F Fn ~P A ) |
6 |
|
imassrn |
|- ( F " ran G ) C_ ran F |
7 |
3
|
frnd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran F C_ ~P A ) |
8 |
7
|
3adant3 |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ran F C_ ~P A ) |
9 |
6 8
|
sstrid |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F " ran G ) C_ ~P A ) |
10 |
|
simp1 |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> A e. Fin3 ) |
11 |
|
fco |
|- ( ( F : ~P A --> ~P A /\ G : _om --> ~P A ) -> ( F o. G ) : _om --> ~P A ) |
12 |
2 11
|
sylan |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F o. G ) : _om --> ~P A ) |
13 |
12
|
3adant3 |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F o. G ) : _om --> ~P A ) |
14 |
|
sscon |
|- ( ( G ` y ) C_ ( G ` suc y ) -> ( A \ ( G ` suc y ) ) C_ ( A \ ( G ` y ) ) ) |
15 |
|
simpr |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> G : _om --> ~P A ) |
16 |
|
peano2 |
|- ( y e. _om -> suc y e. _om ) |
17 |
|
fvco3 |
|- ( ( G : _om --> ~P A /\ suc y e. _om ) -> ( ( F o. G ) ` suc y ) = ( F ` ( G ` suc y ) ) ) |
18 |
15 16 17
|
syl2an |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` suc y ) = ( F ` ( G ` suc y ) ) ) |
19 |
|
simpll |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> A e. Fin3 ) |
20 |
|
ffvelrn |
|- ( ( G : _om --> ~P A /\ suc y e. _om ) -> ( G ` suc y ) e. ~P A ) |
21 |
15 16 20
|
syl2an |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` suc y ) e. ~P A ) |
22 |
21
|
elpwid |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` suc y ) C_ A ) |
23 |
1
|
isf34lem1 |
|- ( ( A e. Fin3 /\ ( G ` suc y ) C_ A ) -> ( F ` ( G ` suc y ) ) = ( A \ ( G ` suc y ) ) ) |
24 |
19 22 23
|
syl2anc |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( F ` ( G ` suc y ) ) = ( A \ ( G ` suc y ) ) ) |
25 |
18 24
|
eqtrd |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` suc y ) = ( A \ ( G ` suc y ) ) ) |
26 |
|
fvco3 |
|- ( ( G : _om --> ~P A /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
27 |
26
|
adantll |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
28 |
|
ffvelrn |
|- ( ( G : _om --> ~P A /\ y e. _om ) -> ( G ` y ) e. ~P A ) |
29 |
28
|
adantll |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` y ) e. ~P A ) |
30 |
29
|
elpwid |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( G ` y ) C_ A ) |
31 |
1
|
isf34lem1 |
|- ( ( A e. Fin3 /\ ( G ` y ) C_ A ) -> ( F ` ( G ` y ) ) = ( A \ ( G ` y ) ) ) |
32 |
19 30 31
|
syl2anc |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( F ` ( G ` y ) ) = ( A \ ( G ` y ) ) ) |
33 |
27 32
|
eqtrd |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( F o. G ) ` y ) = ( A \ ( G ` y ) ) ) |
34 |
25 33
|
sseq12d |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) <-> ( A \ ( G ` suc y ) ) C_ ( A \ ( G ` y ) ) ) ) |
35 |
14 34
|
syl5ibr |
|- ( ( ( A e. Fin3 /\ G : _om --> ~P A ) /\ y e. _om ) -> ( ( G ` y ) C_ ( G ` suc y ) -> ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) ) |
36 |
35
|
ralimdva |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( A. y e. _om ( G ` y ) C_ ( G ` suc y ) -> A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) ) |
37 |
36
|
3impia |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) |
38 |
|
fin33i |
|- ( ( A e. Fin3 /\ ( F o. G ) : _om --> ~P A /\ A. y e. _om ( ( F o. G ) ` suc y ) C_ ( ( F o. G ) ` y ) ) -> |^| ran ( F o. G ) e. ran ( F o. G ) ) |
39 |
10 13 37 38
|
syl3anc |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> |^| ran ( F o. G ) e. ran ( F o. G ) ) |
40 |
|
rnco2 |
|- ran ( F o. G ) = ( F " ran G ) |
41 |
40
|
inteqi |
|- |^| ran ( F o. G ) = |^| ( F " ran G ) |
42 |
39 41 40
|
3eltr3g |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> |^| ( F " ran G ) e. ( F " ran G ) ) |
43 |
|
fnfvima |
|- ( ( F Fn ~P A /\ ( F " ran G ) C_ ~P A /\ |^| ( F " ran G ) e. ( F " ran G ) ) -> ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) ) |
44 |
5 9 42 43
|
syl3anc |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) ) |
45 |
|
simpl |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> A e. Fin3 ) |
46 |
6 7
|
sstrid |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ran G ) C_ ~P A ) |
47 |
|
incom |
|- ( dom F i^i ran G ) = ( ran G i^i dom F ) |
48 |
|
frn |
|- ( G : _om --> ~P A -> ran G C_ ~P A ) |
49 |
48
|
adantl |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G C_ ~P A ) |
50 |
3
|
fdmd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom F = ~P A ) |
51 |
49 50
|
sseqtrrd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G C_ dom F ) |
52 |
|
df-ss |
|- ( ran G C_ dom F <-> ( ran G i^i dom F ) = ran G ) |
53 |
51 52
|
sylib |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( ran G i^i dom F ) = ran G ) |
54 |
47 53
|
eqtrid |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( dom F i^i ran G ) = ran G ) |
55 |
|
fdm |
|- ( G : _om --> ~P A -> dom G = _om ) |
56 |
55
|
adantl |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom G = _om ) |
57 |
|
peano1 |
|- (/) e. _om |
58 |
|
ne0i |
|- ( (/) e. _om -> _om =/= (/) ) |
59 |
57 58
|
mp1i |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> _om =/= (/) ) |
60 |
56 59
|
eqnetrd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> dom G =/= (/) ) |
61 |
|
dm0rn0 |
|- ( dom G = (/) <-> ran G = (/) ) |
62 |
61
|
necon3bii |
|- ( dom G =/= (/) <-> ran G =/= (/) ) |
63 |
60 62
|
sylib |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ran G =/= (/) ) |
64 |
54 63
|
eqnetrd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( dom F i^i ran G ) =/= (/) ) |
65 |
|
imadisj |
|- ( ( F " ran G ) = (/) <-> ( dom F i^i ran G ) = (/) ) |
66 |
65
|
necon3bii |
|- ( ( F " ran G ) =/= (/) <-> ( dom F i^i ran G ) =/= (/) ) |
67 |
64 66
|
sylibr |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ran G ) =/= (/) ) |
68 |
1
|
isf34lem5 |
|- ( ( A e. Fin3 /\ ( ( F " ran G ) C_ ~P A /\ ( F " ran G ) =/= (/) ) ) -> ( F ` |^| ( F " ran G ) ) = U. ( F " ( F " ran G ) ) ) |
69 |
45 46 67 68
|
syl12anc |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F ` |^| ( F " ran G ) ) = U. ( F " ( F " ran G ) ) ) |
70 |
1
|
isf34lem3 |
|- ( ( A e. Fin3 /\ ran G C_ ~P A ) -> ( F " ( F " ran G ) ) = ran G ) |
71 |
45 49 70
|
syl2anc |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F " ( F " ran G ) ) = ran G ) |
72 |
71
|
unieqd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> U. ( F " ( F " ran G ) ) = U. ran G ) |
73 |
69 72
|
eqtrd |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( F ` |^| ( F " ran G ) ) = U. ran G ) |
74 |
73 71
|
eleq12d |
|- ( ( A e. Fin3 /\ G : _om --> ~P A ) -> ( ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) <-> U. ran G e. ran G ) ) |
75 |
74
|
3adant3 |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> ( ( F ` |^| ( F " ran G ) ) e. ( F " ( F " ran G ) ) <-> U. ran G e. ran G ) ) |
76 |
44 75
|
mpbid |
|- ( ( A e. Fin3 /\ G : _om --> ~P A /\ A. y e. _om ( G ` y ) C_ ( G ` suc y ) ) -> U. ran G e. ran G ) |