Step |
Hyp |
Ref |
Expression |
1 |
|
isfild.1 |
|- ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) |
2 |
|
isfild.2 |
|- ( ph -> A e. V ) |
3 |
|
elex |
|- ( B e. F -> B e. _V ) |
4 |
3
|
a1i |
|- ( ph -> ( B e. F -> B e. _V ) ) |
5 |
|
ssexg |
|- ( ( B C_ A /\ A e. V ) -> B e. _V ) |
6 |
5
|
expcom |
|- ( A e. V -> ( B C_ A -> B e. _V ) ) |
7 |
2 6
|
syl |
|- ( ph -> ( B C_ A -> B e. _V ) ) |
8 |
7
|
adantrd |
|- ( ph -> ( ( B C_ A /\ [. B / x ]. ps ) -> B e. _V ) ) |
9 |
|
eleq1 |
|- ( y = B -> ( y e. F <-> B e. F ) ) |
10 |
|
sseq1 |
|- ( y = B -> ( y C_ A <-> B C_ A ) ) |
11 |
|
dfsbcq |
|- ( y = B -> ( [. y / x ]. ps <-> [. B / x ]. ps ) ) |
12 |
10 11
|
anbi12d |
|- ( y = B -> ( ( y C_ A /\ [. y / x ]. ps ) <-> ( B C_ A /\ [. B / x ]. ps ) ) ) |
13 |
9 12
|
bibi12d |
|- ( y = B -> ( ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) <-> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
14 |
13
|
imbi2d |
|- ( y = B -> ( ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) <-> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) ) |
15 |
|
nfv |
|- F/ x ph |
16 |
|
nfv |
|- F/ x y e. F |
17 |
|
nfv |
|- F/ x y C_ A |
18 |
|
nfsbc1v |
|- F/ x [. y / x ]. ps |
19 |
17 18
|
nfan |
|- F/ x ( y C_ A /\ [. y / x ]. ps ) |
20 |
16 19
|
nfbi |
|- F/ x ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) |
21 |
15 20
|
nfim |
|- F/ x ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
22 |
|
eleq1 |
|- ( x = y -> ( x e. F <-> y e. F ) ) |
23 |
|
sseq1 |
|- ( x = y -> ( x C_ A <-> y C_ A ) ) |
24 |
|
sbceq1a |
|- ( x = y -> ( ps <-> [. y / x ]. ps ) ) |
25 |
23 24
|
anbi12d |
|- ( x = y -> ( ( x C_ A /\ ps ) <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
26 |
22 25
|
bibi12d |
|- ( x = y -> ( ( x e. F <-> ( x C_ A /\ ps ) ) <-> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) ) |
27 |
26
|
imbi2d |
|- ( x = y -> ( ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) <-> ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) ) ) |
28 |
21 27 1
|
chvarfv |
|- ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) |
29 |
14 28
|
vtoclg |
|- ( B e. _V -> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
30 |
29
|
com12 |
|- ( ph -> ( B e. _V -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) |
31 |
4 8 30
|
pm5.21ndd |
|- ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) |