| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isfild.1 | 
							 |-  ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							isfild.2 | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							elex | 
							 |-  ( B e. F -> B e. _V )  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							 |-  ( ph -> ( B e. F -> B e. _V ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ssexg | 
							 |-  ( ( B C_ A /\ A e. V ) -> B e. _V )  | 
						
						
							| 6 | 
							
								5
							 | 
							expcom | 
							 |-  ( A e. V -> ( B C_ A -> B e. _V ) )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							syl | 
							 |-  ( ph -> ( B C_ A -> B e. _V ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantrd | 
							 |-  ( ph -> ( ( B C_ A /\ [. B / x ]. ps ) -> B e. _V ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							 |-  ( y = B -> ( y e. F <-> B e. F ) )  | 
						
						
							| 10 | 
							
								
							 | 
							sseq1 | 
							 |-  ( y = B -> ( y C_ A <-> B C_ A ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfsbcq | 
							 |-  ( y = B -> ( [. y / x ]. ps <-> [. B / x ]. ps ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							anbi12d | 
							 |-  ( y = B -> ( ( y C_ A /\ [. y / x ]. ps ) <-> ( B C_ A /\ [. B / x ]. ps ) ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							bibi12d | 
							 |-  ( y = B -> ( ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) <-> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imbi2d | 
							 |-  ( y = B -> ( ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) <-> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							nfv | 
							 |-  F/ x ph  | 
						
						
							| 16 | 
							
								
							 | 
							nfv | 
							 |-  F/ x y e. F  | 
						
						
							| 17 | 
							
								
							 | 
							nfv | 
							 |-  F/ x y C_ A  | 
						
						
							| 18 | 
							
								
							 | 
							nfsbc1v | 
							 |-  F/ x [. y / x ]. ps  | 
						
						
							| 19 | 
							
								17 18
							 | 
							nfan | 
							 |-  F/ x ( y C_ A /\ [. y / x ]. ps )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							nfbi | 
							 |-  F/ x ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) )  | 
						
						
							| 21 | 
							
								15 20
							 | 
							nfim | 
							 |-  F/ x ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = y -> ( x e. F <-> y e. F ) )  | 
						
						
							| 23 | 
							
								
							 | 
							sseq1 | 
							 |-  ( x = y -> ( x C_ A <-> y C_ A ) )  | 
						
						
							| 24 | 
							
								
							 | 
							sbceq1a | 
							 |-  ( x = y -> ( ps <-> [. y / x ]. ps ) )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							anbi12d | 
							 |-  ( x = y -> ( ( x C_ A /\ ps ) <-> ( y C_ A /\ [. y / x ]. ps ) ) )  | 
						
						
							| 26 | 
							
								22 25
							 | 
							bibi12d | 
							 |-  ( x = y -> ( ( x e. F <-> ( x C_ A /\ ps ) ) <-> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							imbi2d | 
							 |-  ( x = y -> ( ( ph -> ( x e. F <-> ( x C_ A /\ ps ) ) ) <-> ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) ) ) )  | 
						
						
							| 28 | 
							
								21 27 1
							 | 
							chvarfv | 
							 |-  ( ph -> ( y e. F <-> ( y C_ A /\ [. y / x ]. ps ) ) )  | 
						
						
							| 29 | 
							
								14 28
							 | 
							vtoclg | 
							 |-  ( B e. _V -> ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							com12 | 
							 |-  ( ph -> ( B e. _V -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) ) )  | 
						
						
							| 31 | 
							
								4 8 30
							 | 
							pm5.21ndd | 
							 |-  ( ph -> ( B e. F <-> ( B C_ A /\ [. B / x ]. ps ) ) )  |