Metamath Proof Explorer


Theorem isfin1-4

Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin1-4
|- ( A e. V -> ( A e. Fin <-> [C.] Fr ~P A ) )

Proof

Step Hyp Ref Expression
1 isfin1-3
 |-  ( A e. V -> ( A e. Fin <-> `' [C.] Fr ~P A ) )
2 eqid
 |-  ( x e. ~P A |-> ( A \ x ) ) = ( x e. ~P A |-> ( A \ x ) )
3 2 compssiso
 |-  ( A e. V -> ( x e. ~P A |-> ( A \ x ) ) Isom [C.] , `' [C.] ( ~P A , ~P A ) )
4 isofr
 |-  ( ( x e. ~P A |-> ( A \ x ) ) Isom [C.] , `' [C.] ( ~P A , ~P A ) -> ( [C.] Fr ~P A <-> `' [C.] Fr ~P A ) )
5 3 4 syl
 |-  ( A e. V -> ( [C.] Fr ~P A <-> `' [C.] Fr ~P A ) )
6 1 5 bitr4d
 |-  ( A e. V -> ( A e. Fin <-> [C.] Fr ~P A ) )