Description: A set is I-finite iff every system of subsets contains a minimal subset. (Contributed by Stefan O'Rear, 4-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfin1-4 | |- ( A e. V -> ( A e. Fin <-> [C.] Fr ~P A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfin1-3 | |- ( A e. V -> ( A e. Fin <-> `' [C.] Fr ~P A ) ) |
|
2 | eqid | |- ( x e. ~P A |-> ( A \ x ) ) = ( x e. ~P A |-> ( A \ x ) ) |
|
3 | 2 | compssiso | |- ( A e. V -> ( x e. ~P A |-> ( A \ x ) ) Isom [C.] , `' [C.] ( ~P A , ~P A ) ) |
4 | isofr | |- ( ( x e. ~P A |-> ( A \ x ) ) Isom [C.] , `' [C.] ( ~P A , ~P A ) -> ( [C.] Fr ~P A <-> `' [C.] Fr ~P A ) ) |
|
5 | 3 4 | syl | |- ( A e. V -> ( [C.] Fr ~P A <-> `' [C.] Fr ~P A ) ) |
6 | 1 5 | bitr4d | |- ( A e. V -> ( A e. Fin <-> [C.] Fr ~P A ) ) |