Metamath Proof Explorer


Theorem isfin3

Description: Definition of a III-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin3
|- ( A e. Fin3 <-> ~P A e. Fin4 )

Proof

Step Hyp Ref Expression
1 df-fin3
 |-  Fin3 = { x | ~P x e. Fin4 }
2 1 eleq2i
 |-  ( A e. Fin3 <-> A e. { x | ~P x e. Fin4 } )
3 pwexr
 |-  ( ~P A e. Fin4 -> A e. _V )
4 pweq
 |-  ( x = A -> ~P x = ~P A )
5 4 eleq1d
 |-  ( x = A -> ( ~P x e. Fin4 <-> ~P A e. Fin4 ) )
6 3 5 elab3
 |-  ( A e. { x | ~P x e. Fin4 } <-> ~P A e. Fin4 )
7 2 6 bitri
 |-  ( A e. Fin3 <-> ~P A e. Fin4 )