Metamath Proof Explorer


Theorem isfin3-2

Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto _om . (Contributed by Stefan O'Rear, 6-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin3-2
|- ( A e. V -> ( A e. Fin3 <-> -. _om ~<_* A ) )

Proof

Step Hyp Ref Expression
1 isfin32i
 |-  ( A e. Fin3 -> -. _om ~<_* A )
2 isf33lem
 |-  Fin3 = { g | A. a e. ( ~P g ^m _om ) ( A. x e. _om ( a ` suc x ) C_ ( a ` x ) -> |^| ran a e. ran a ) }
3 2 isf32lem12
 |-  ( A e. V -> ( -. _om ~<_* A -> A e. Fin3 ) )
4 1 3 impbid2
 |-  ( A e. V -> ( A e. Fin3 <-> -. _om ~<_* A ) )