Metamath Proof Explorer


Theorem isfin3-3

Description: Weakly Dedekind-infinite sets are exactly those with an _om -indexed descending chain of subsets. (Contributed by Stefan O'Rear, 7-Nov-2014)

Ref Expression
Assertion isfin3-3
|- ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) )

Proof

Step Hyp Ref Expression
1 isf33lem
 |-  Fin3 = { g | A. a e. ( ~P g ^m _om ) ( A. b e. _om ( a ` suc b ) C_ ( a ` b ) -> |^| ran a e. ran a ) }
2 1 isfin3ds
 |-  ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` suc x ) C_ ( f ` x ) -> |^| ran f e. ran f ) ) )