Metamath Proof Explorer


Theorem isfin3-4

Description: Weakly Dedekind-infinite sets are exactly those with an _om -indexed ascending chain of subsets. (Contributed by Stefan O'Rear, 7-Nov-2014) (Proof shortened by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion isfin3-4
|- ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` x ) C_ ( f ` suc x ) -> U. ran f e. ran f ) ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( y e. ~P A |-> ( A \ y ) ) = ( y e. ~P A |-> ( A \ y ) )
2 1 isf34lem6
 |-  ( A e. V -> ( A e. Fin3 <-> A. f e. ( ~P A ^m _om ) ( A. x e. _om ( f ` x ) C_ ( f ` suc x ) -> U. ran f e. ran f ) ) )