| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfin3 |  |-  ( A e. Fin3 <-> ~P A e. Fin4 ) | 
						
							| 2 |  | isfin4-2 |  |-  ( ~P A e. Fin4 -> ( ~P A e. Fin4 <-> -. _om ~<_ ~P A ) ) | 
						
							| 3 | 2 | ibi |  |-  ( ~P A e. Fin4 -> -. _om ~<_ ~P A ) | 
						
							| 4 |  | relwdom |  |-  Rel ~<_* | 
						
							| 5 | 4 | brrelex1i |  |-  ( _om ~<_* A -> _om e. _V ) | 
						
							| 6 |  | canth2g |  |-  ( _om e. _V -> _om ~< ~P _om ) | 
						
							| 7 |  | sdomdom |  |-  ( _om ~< ~P _om -> _om ~<_ ~P _om ) | 
						
							| 8 | 5 6 7 | 3syl |  |-  ( _om ~<_* A -> _om ~<_ ~P _om ) | 
						
							| 9 |  | wdompwdom |  |-  ( _om ~<_* A -> ~P _om ~<_ ~P A ) | 
						
							| 10 |  | domtr |  |-  ( ( _om ~<_ ~P _om /\ ~P _om ~<_ ~P A ) -> _om ~<_ ~P A ) | 
						
							| 11 | 8 9 10 | syl2anc |  |-  ( _om ~<_* A -> _om ~<_ ~P A ) | 
						
							| 12 | 3 11 | nsyl |  |-  ( ~P A e. Fin4 -> -. _om ~<_* A ) | 
						
							| 13 | 1 12 | sylbi |  |-  ( A e. Fin3 -> -. _om ~<_* A ) |