| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psseq2 |  |-  ( x = A -> ( y C. x <-> y C. A ) ) | 
						
							| 2 |  | breq2 |  |-  ( x = A -> ( y ~~ x <-> y ~~ A ) ) | 
						
							| 3 | 1 2 | anbi12d |  |-  ( x = A -> ( ( y C. x /\ y ~~ x ) <-> ( y C. A /\ y ~~ A ) ) ) | 
						
							| 4 | 3 | exbidv |  |-  ( x = A -> ( E. y ( y C. x /\ y ~~ x ) <-> E. y ( y C. A /\ y ~~ A ) ) ) | 
						
							| 5 | 4 | notbid |  |-  ( x = A -> ( -. E. y ( y C. x /\ y ~~ x ) <-> -. E. y ( y C. A /\ y ~~ A ) ) ) | 
						
							| 6 |  | df-fin4 |  |-  Fin4 = { x | -. E. y ( y C. x /\ y ~~ x ) } | 
						
							| 7 | 5 6 | elab2g |  |-  ( A e. V -> ( A e. Fin4 <-> -. E. y ( y C. A /\ y ~~ A ) ) ) |