Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
|- 1o e. On |
2 |
|
djudoml |
|- ( ( A e. Fin4 /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) |
3 |
1 2
|
mpan2 |
|- ( A e. Fin4 -> A ~<_ ( A |_| 1o ) ) |
4 |
|
1oex |
|- 1o e. _V |
5 |
4
|
snid |
|- 1o e. { 1o } |
6 |
|
0lt1o |
|- (/) e. 1o |
7 |
|
opelxpi |
|- ( ( 1o e. { 1o } /\ (/) e. 1o ) -> <. 1o , (/) >. e. ( { 1o } X. 1o ) ) |
8 |
5 6 7
|
mp2an |
|- <. 1o , (/) >. e. ( { 1o } X. 1o ) |
9 |
|
elun2 |
|- ( <. 1o , (/) >. e. ( { 1o } X. 1o ) -> <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) |
10 |
8 9
|
ax-mp |
|- <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
11 |
|
df-dju |
|- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
12 |
10 11
|
eleqtrri |
|- <. 1o , (/) >. e. ( A |_| 1o ) |
13 |
|
1n0 |
|- 1o =/= (/) |
14 |
|
opelxp1 |
|- ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o e. { (/) } ) |
15 |
|
elsni |
|- ( 1o e. { (/) } -> 1o = (/) ) |
16 |
14 15
|
syl |
|- ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o = (/) ) |
17 |
16
|
necon3ai |
|- ( 1o =/= (/) -> -. <. 1o , (/) >. e. ( { (/) } X. A ) ) |
18 |
13 17
|
ax-mp |
|- -. <. 1o , (/) >. e. ( { (/) } X. A ) |
19 |
|
ssun1 |
|- ( { (/) } X. A ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
20 |
19 11
|
sseqtrri |
|- ( { (/) } X. A ) C_ ( A |_| 1o ) |
21 |
|
ssnelpss |
|- ( ( { (/) } X. A ) C_ ( A |_| 1o ) -> ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) ) |
22 |
20 21
|
ax-mp |
|- ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) |
23 |
12 18 22
|
mp2an |
|- ( { (/) } X. A ) C. ( A |_| 1o ) |
24 |
|
0ex |
|- (/) e. _V |
25 |
|
relen |
|- Rel ~~ |
26 |
25
|
brrelex1i |
|- ( A ~~ ( A |_| 1o ) -> A e. _V ) |
27 |
|
xpsnen2g |
|- ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) |
28 |
24 26 27
|
sylancr |
|- ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ A ) |
29 |
|
entr |
|- ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
30 |
28 29
|
mpancom |
|- ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) |
31 |
|
fin4i |
|- ( ( ( { (/) } X. A ) C. ( A |_| 1o ) /\ ( { (/) } X. A ) ~~ ( A |_| 1o ) ) -> -. ( A |_| 1o ) e. Fin4 ) |
32 |
23 30 31
|
sylancr |
|- ( A ~~ ( A |_| 1o ) -> -. ( A |_| 1o ) e. Fin4 ) |
33 |
|
fin4en1 |
|- ( A ~~ ( A |_| 1o ) -> ( A e. Fin4 -> ( A |_| 1o ) e. Fin4 ) ) |
34 |
32 33
|
mtod |
|- ( A ~~ ( A |_| 1o ) -> -. A e. Fin4 ) |
35 |
34
|
con2i |
|- ( A e. Fin4 -> -. A ~~ ( A |_| 1o ) ) |
36 |
|
brsdom |
|- ( A ~< ( A |_| 1o ) <-> ( A ~<_ ( A |_| 1o ) /\ -. A ~~ ( A |_| 1o ) ) ) |
37 |
3 35 36
|
sylanbrc |
|- ( A e. Fin4 -> A ~< ( A |_| 1o ) ) |
38 |
|
sdomnen |
|- ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) |
39 |
|
infdju1 |
|- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
40 |
39
|
ensymd |
|- ( _om ~<_ A -> A ~~ ( A |_| 1o ) ) |
41 |
38 40
|
nsyl |
|- ( A ~< ( A |_| 1o ) -> -. _om ~<_ A ) |
42 |
|
relsdom |
|- Rel ~< |
43 |
42
|
brrelex1i |
|- ( A ~< ( A |_| 1o ) -> A e. _V ) |
44 |
|
isfin4-2 |
|- ( A e. _V -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
45 |
43 44
|
syl |
|- ( A ~< ( A |_| 1o ) -> ( A e. Fin4 <-> -. _om ~<_ A ) ) |
46 |
41 45
|
mpbird |
|- ( A ~< ( A |_| 1o ) -> A e. Fin4 ) |
47 |
37 46
|
impbii |
|- ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |