| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1on |  |-  1o e. On | 
						
							| 2 |  | djudoml |  |-  ( ( A e. Fin4 /\ 1o e. On ) -> A ~<_ ( A |_| 1o ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( A e. Fin4 -> A ~<_ ( A |_| 1o ) ) | 
						
							| 4 |  | 1oex |  |-  1o e. _V | 
						
							| 5 | 4 | snid |  |-  1o e. { 1o } | 
						
							| 6 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 7 |  | opelxpi |  |-  ( ( 1o e. { 1o } /\ (/) e. 1o ) -> <. 1o , (/) >. e. ( { 1o } X. 1o ) ) | 
						
							| 8 | 5 6 7 | mp2an |  |-  <. 1o , (/) >. e. ( { 1o } X. 1o ) | 
						
							| 9 |  | elun2 |  |-  ( <. 1o , (/) >. e. ( { 1o } X. 1o ) -> <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  <. 1o , (/) >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 11 |  | df-dju |  |-  ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 12 | 10 11 | eleqtrri |  |-  <. 1o , (/) >. e. ( A |_| 1o ) | 
						
							| 13 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 14 |  | opelxp1 |  |-  ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o e. { (/) } ) | 
						
							| 15 |  | elsni |  |-  ( 1o e. { (/) } -> 1o = (/) ) | 
						
							| 16 | 14 15 | syl |  |-  ( <. 1o , (/) >. e. ( { (/) } X. A ) -> 1o = (/) ) | 
						
							| 17 | 16 | necon3ai |  |-  ( 1o =/= (/) -> -. <. 1o , (/) >. e. ( { (/) } X. A ) ) | 
						
							| 18 | 13 17 | ax-mp |  |-  -. <. 1o , (/) >. e. ( { (/) } X. A ) | 
						
							| 19 |  | ssun1 |  |-  ( { (/) } X. A ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) | 
						
							| 20 | 19 11 | sseqtrri |  |-  ( { (/) } X. A ) C_ ( A |_| 1o ) | 
						
							| 21 |  | ssnelpss |  |-  ( ( { (/) } X. A ) C_ ( A |_| 1o ) -> ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) ) | 
						
							| 22 | 20 21 | ax-mp |  |-  ( ( <. 1o , (/) >. e. ( A |_| 1o ) /\ -. <. 1o , (/) >. e. ( { (/) } X. A ) ) -> ( { (/) } X. A ) C. ( A |_| 1o ) ) | 
						
							| 23 | 12 18 22 | mp2an |  |-  ( { (/) } X. A ) C. ( A |_| 1o ) | 
						
							| 24 |  | 0ex |  |-  (/) e. _V | 
						
							| 25 |  | relen |  |-  Rel ~~ | 
						
							| 26 | 25 | brrelex1i |  |-  ( A ~~ ( A |_| 1o ) -> A e. _V ) | 
						
							| 27 |  | xpsnen2g |  |-  ( ( (/) e. _V /\ A e. _V ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 28 | 24 26 27 | sylancr |  |-  ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ A ) | 
						
							| 29 |  | entr |  |-  ( ( ( { (/) } X. A ) ~~ A /\ A ~~ ( A |_| 1o ) ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) | 
						
							| 30 | 28 29 | mpancom |  |-  ( A ~~ ( A |_| 1o ) -> ( { (/) } X. A ) ~~ ( A |_| 1o ) ) | 
						
							| 31 |  | fin4i |  |-  ( ( ( { (/) } X. A ) C. ( A |_| 1o ) /\ ( { (/) } X. A ) ~~ ( A |_| 1o ) ) -> -. ( A |_| 1o ) e. Fin4 ) | 
						
							| 32 | 23 30 31 | sylancr |  |-  ( A ~~ ( A |_| 1o ) -> -. ( A |_| 1o ) e. Fin4 ) | 
						
							| 33 |  | fin4en1 |  |-  ( A ~~ ( A |_| 1o ) -> ( A e. Fin4 -> ( A |_| 1o ) e. Fin4 ) ) | 
						
							| 34 | 32 33 | mtod |  |-  ( A ~~ ( A |_| 1o ) -> -. A e. Fin4 ) | 
						
							| 35 | 34 | con2i |  |-  ( A e. Fin4 -> -. A ~~ ( A |_| 1o ) ) | 
						
							| 36 |  | brsdom |  |-  ( A ~< ( A |_| 1o ) <-> ( A ~<_ ( A |_| 1o ) /\ -. A ~~ ( A |_| 1o ) ) ) | 
						
							| 37 | 3 35 36 | sylanbrc |  |-  ( A e. Fin4 -> A ~< ( A |_| 1o ) ) | 
						
							| 38 |  | sdomnen |  |-  ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) | 
						
							| 39 |  | infdju1 |  |-  ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) | 
						
							| 40 | 39 | ensymd |  |-  ( _om ~<_ A -> A ~~ ( A |_| 1o ) ) | 
						
							| 41 | 38 40 | nsyl |  |-  ( A ~< ( A |_| 1o ) -> -. _om ~<_ A ) | 
						
							| 42 |  | relsdom |  |-  Rel ~< | 
						
							| 43 | 42 | brrelex1i |  |-  ( A ~< ( A |_| 1o ) -> A e. _V ) | 
						
							| 44 |  | isfin4-2 |  |-  ( A e. _V -> ( A e. Fin4 <-> -. _om ~<_ A ) ) | 
						
							| 45 | 43 44 | syl |  |-  ( A ~< ( A |_| 1o ) -> ( A e. Fin4 <-> -. _om ~<_ A ) ) | 
						
							| 46 | 41 45 | mpbird |  |-  ( A ~< ( A |_| 1o ) -> A e. Fin4 ) | 
						
							| 47 | 37 46 | impbii |  |-  ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) |