Step |
Hyp |
Ref |
Expression |
1 |
|
nne |
|- ( -. A =/= (/) <-> A = (/) ) |
2 |
1
|
bicomi |
|- ( A = (/) <-> -. A =/= (/) ) |
3 |
2
|
a1i |
|- ( A e. V -> ( A = (/) <-> -. A =/= (/) ) ) |
4 |
|
djudoml |
|- ( ( A e. V /\ A e. V ) -> A ~<_ ( A |_| A ) ) |
5 |
4
|
anidms |
|- ( A e. V -> A ~<_ ( A |_| A ) ) |
6 |
|
brsdom |
|- ( A ~< ( A |_| A ) <-> ( A ~<_ ( A |_| A ) /\ -. A ~~ ( A |_| A ) ) ) |
7 |
6
|
baib |
|- ( A ~<_ ( A |_| A ) -> ( A ~< ( A |_| A ) <-> -. A ~~ ( A |_| A ) ) ) |
8 |
5 7
|
syl |
|- ( A e. V -> ( A ~< ( A |_| A ) <-> -. A ~~ ( A |_| A ) ) ) |
9 |
3 8
|
orbi12d |
|- ( A e. V -> ( ( A = (/) \/ A ~< ( A |_| A ) ) <-> ( -. A =/= (/) \/ -. A ~~ ( A |_| A ) ) ) ) |
10 |
|
isfin5 |
|- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
11 |
|
ianor |
|- ( -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) <-> ( -. A =/= (/) \/ -. A ~~ ( A |_| A ) ) ) |
12 |
9 10 11
|
3bitr4g |
|- ( A e. V -> ( A e. Fin5 <-> -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) ) ) |