| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fin6 |
|- Fin6 = { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } |
| 2 |
1
|
eleq2i |
|- ( A e. Fin6 <-> A e. { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } ) |
| 3 |
|
relsdom |
|- Rel ~< |
| 4 |
3
|
brrelex1i |
|- ( A ~< 2o -> A e. _V ) |
| 5 |
3
|
brrelex1i |
|- ( A ~< ( A X. A ) -> A e. _V ) |
| 6 |
4 5
|
jaoi |
|- ( ( A ~< 2o \/ A ~< ( A X. A ) ) -> A e. _V ) |
| 7 |
|
breq1 |
|- ( x = A -> ( x ~< 2o <-> A ~< 2o ) ) |
| 8 |
|
id |
|- ( x = A -> x = A ) |
| 9 |
8
|
sqxpeqd |
|- ( x = A -> ( x X. x ) = ( A X. A ) ) |
| 10 |
8 9
|
breq12d |
|- ( x = A -> ( x ~< ( x X. x ) <-> A ~< ( A X. A ) ) ) |
| 11 |
7 10
|
orbi12d |
|- ( x = A -> ( ( x ~< 2o \/ x ~< ( x X. x ) ) <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) ) |
| 12 |
6 11
|
elab3 |
|- ( A e. { x | ( x ~< 2o \/ x ~< ( x X. x ) ) } <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |
| 13 |
2 12
|
bitri |
|- ( A e. Fin6 <-> ( A ~< 2o \/ A ~< ( A X. A ) ) ) |