Step |
Hyp |
Ref |
Expression |
1 |
|
isfin7 |
|- ( A e. Fin7 -> ( A e. Fin7 <-> -. E. x e. ( On \ _om ) A ~~ x ) ) |
2 |
1
|
ibi |
|- ( A e. Fin7 -> -. E. x e. ( On \ _om ) A ~~ x ) |
3 |
|
isnum2 |
|- ( A e. dom card <-> E. x e. On x ~~ A ) |
4 |
|
ensym |
|- ( x ~~ A -> A ~~ x ) |
5 |
|
simprl |
|- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> x e. On ) |
6 |
|
enfi |
|- ( A ~~ x -> ( A e. Fin <-> x e. Fin ) ) |
7 |
|
onfin |
|- ( x e. On -> ( x e. Fin <-> x e. _om ) ) |
8 |
6 7
|
sylan9bbr |
|- ( ( x e. On /\ A ~~ x ) -> ( A e. Fin <-> x e. _om ) ) |
9 |
8
|
biimprd |
|- ( ( x e. On /\ A ~~ x ) -> ( x e. _om -> A e. Fin ) ) |
10 |
9
|
con3d |
|- ( ( x e. On /\ A ~~ x ) -> ( -. A e. Fin -> -. x e. _om ) ) |
11 |
10
|
impcom |
|- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> -. x e. _om ) |
12 |
5 11
|
eldifd |
|- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> x e. ( On \ _om ) ) |
13 |
|
simprr |
|- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> A ~~ x ) |
14 |
12 13
|
jca |
|- ( ( -. A e. Fin /\ ( x e. On /\ A ~~ x ) ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) |
15 |
4 14
|
sylanr2 |
|- ( ( -. A e. Fin /\ ( x e. On /\ x ~~ A ) ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) |
16 |
15
|
ex |
|- ( -. A e. Fin -> ( ( x e. On /\ x ~~ A ) -> ( x e. ( On \ _om ) /\ A ~~ x ) ) ) |
17 |
16
|
reximdv2 |
|- ( -. A e. Fin -> ( E. x e. On x ~~ A -> E. x e. ( On \ _om ) A ~~ x ) ) |
18 |
17
|
com12 |
|- ( E. x e. On x ~~ A -> ( -. A e. Fin -> E. x e. ( On \ _om ) A ~~ x ) ) |
19 |
3 18
|
sylbi |
|- ( A e. dom card -> ( -. A e. Fin -> E. x e. ( On \ _om ) A ~~ x ) ) |
20 |
19
|
con1d |
|- ( A e. dom card -> ( -. E. x e. ( On \ _om ) A ~~ x -> A e. Fin ) ) |
21 |
2 20
|
syl5com |
|- ( A e. Fin7 -> ( A e. dom card -> A e. Fin ) ) |
22 |
|
eldifi |
|- ( x e. ( On \ _om ) -> x e. On ) |
23 |
|
ensym |
|- ( A ~~ x -> x ~~ A ) |
24 |
|
isnumi |
|- ( ( x e. On /\ x ~~ A ) -> A e. dom card ) |
25 |
22 23 24
|
syl2an |
|- ( ( x e. ( On \ _om ) /\ A ~~ x ) -> A e. dom card ) |
26 |
25
|
rexlimiva |
|- ( E. x e. ( On \ _om ) A ~~ x -> A e. dom card ) |
27 |
26
|
con3i |
|- ( -. A e. dom card -> -. E. x e. ( On \ _om ) A ~~ x ) |
28 |
|
isfin7 |
|- ( A e. V -> ( A e. Fin7 <-> -. E. x e. ( On \ _om ) A ~~ x ) ) |
29 |
27 28
|
syl5ibr |
|- ( A e. V -> ( -. A e. dom card -> A e. Fin7 ) ) |
30 |
|
fin17 |
|- ( A e. Fin -> A e. Fin7 ) |
31 |
30
|
a1i |
|- ( A e. V -> ( A e. Fin -> A e. Fin7 ) ) |
32 |
29 31
|
jad |
|- ( A e. V -> ( ( A e. dom card -> A e. Fin ) -> A e. Fin7 ) ) |
33 |
21 32
|
impbid2 |
|- ( A e. V -> ( A e. Fin7 <-> ( A e. dom card -> A e. Fin ) ) ) |