| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 2 |  | hashfz1 |  |-  ( ( # ` A ) e. NN0 -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. Fin -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) | 
						
							| 4 |  | fzfi |  |-  ( 1 ... ( # ` A ) ) e. Fin | 
						
							| 5 |  | hashen |  |-  ( ( ( 1 ... ( # ` A ) ) e. Fin /\ A e. Fin ) -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) | 
						
							| 6 | 4 5 | mpan |  |-  ( A e. Fin -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( A e. Fin -> ( 1 ... ( # ` A ) ) ~~ A ) | 
						
							| 8 |  | ensym |  |-  ( ( 1 ... ( # ` A ) ) ~~ A -> A ~~ ( 1 ... ( # ` A ) ) ) | 
						
							| 9 |  | enfi |  |-  ( A ~~ ( 1 ... ( # ` A ) ) -> ( A e. Fin <-> ( 1 ... ( # ` A ) ) e. Fin ) ) | 
						
							| 10 | 9 | biimprcd |  |-  ( ( 1 ... ( # ` A ) ) e. Fin -> ( A ~~ ( 1 ... ( # ` A ) ) -> A e. Fin ) ) | 
						
							| 11 | 4 8 10 | mpsyl |  |-  ( ( 1 ... ( # ` A ) ) ~~ A -> A e. Fin ) | 
						
							| 12 | 7 11 | impbii |  |-  ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |