Step |
Hyp |
Ref |
Expression |
1 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
2 |
|
hashfz1 |
|- ( ( # ` A ) e. NN0 -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) |
3 |
1 2
|
syl |
|- ( A e. Fin -> ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) ) |
4 |
|
fzfi |
|- ( 1 ... ( # ` A ) ) e. Fin |
5 |
|
hashen |
|- ( ( ( 1 ... ( # ` A ) ) e. Fin /\ A e. Fin ) -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) |
6 |
4 5
|
mpan |
|- ( A e. Fin -> ( ( # ` ( 1 ... ( # ` A ) ) ) = ( # ` A ) <-> ( 1 ... ( # ` A ) ) ~~ A ) ) |
7 |
3 6
|
mpbid |
|- ( A e. Fin -> ( 1 ... ( # ` A ) ) ~~ A ) |
8 |
|
ensym |
|- ( ( 1 ... ( # ` A ) ) ~~ A -> A ~~ ( 1 ... ( # ` A ) ) ) |
9 |
|
enfi |
|- ( A ~~ ( 1 ... ( # ` A ) ) -> ( A e. Fin <-> ( 1 ... ( # ` A ) ) e. Fin ) ) |
10 |
9
|
biimprcd |
|- ( ( 1 ... ( # ` A ) ) e. Fin -> ( A ~~ ( 1 ... ( # ` A ) ) -> A e. Fin ) ) |
11 |
4 8 10
|
mpsyl |
|- ( ( 1 ... ( # ` A ) ) ~~ A -> A e. Fin ) |
12 |
7 11
|
impbii |
|- ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |