Description: A field is a commutative division ring. (Contributed by Mario Carneiro, 17-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-field | |- Field = ( DivRing i^i CRing ) |
|
2 | 1 | elin2 | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |