Metamath Proof Explorer


Theorem isfld2

Description: The predicate "is a field". (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion isfld2
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) )

Proof

Step Hyp Ref Expression
1 flddivrng
 |-  ( K e. Fld -> K e. DivRingOps )
2 fldcrng
 |-  ( K e. Fld -> K e. CRingOps )
3 1 2 jca
 |-  ( K e. Fld -> ( K e. DivRingOps /\ K e. CRingOps ) )
4 iscrngo
 |-  ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) )
5 4 simprbi
 |-  ( K e. CRingOps -> K e. Com2 )
6 elin
 |-  ( K e. ( DivRingOps i^i Com2 ) <-> ( K e. DivRingOps /\ K e. Com2 ) )
7 6 biimpri
 |-  ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. ( DivRingOps i^i Com2 ) )
8 df-fld
 |-  Fld = ( DivRingOps i^i Com2 )
9 7 8 eleqtrrdi
 |-  ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. Fld )
10 5 9 sylan2
 |-  ( ( K e. DivRingOps /\ K e. CRingOps ) -> K e. Fld )
11 3 10 impbii
 |-  ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) )