Step |
Hyp |
Ref |
Expression |
1 |
|
flddivrng |
|- ( K e. Fld -> K e. DivRingOps ) |
2 |
|
fldcrng |
|- ( K e. Fld -> K e. CRingOps ) |
3 |
1 2
|
jca |
|- ( K e. Fld -> ( K e. DivRingOps /\ K e. CRingOps ) ) |
4 |
|
iscrngo |
|- ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) ) |
5 |
4
|
simprbi |
|- ( K e. CRingOps -> K e. Com2 ) |
6 |
|
elin |
|- ( K e. ( DivRingOps i^i Com2 ) <-> ( K e. DivRingOps /\ K e. Com2 ) ) |
7 |
6
|
biimpri |
|- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. ( DivRingOps i^i Com2 ) ) |
8 |
|
df-fld |
|- Fld = ( DivRingOps i^i Com2 ) |
9 |
7 8
|
eleqtrrdi |
|- ( ( K e. DivRingOps /\ K e. Com2 ) -> K e. Fld ) |
10 |
5 9
|
sylan2 |
|- ( ( K e. DivRingOps /\ K e. CRingOps ) -> K e. Fld ) |
11 |
3 10
|
impbii |
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |