| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funeq |
|- ( r = R -> ( Fun r <-> Fun R ) ) |
| 2 |
1
|
adantr |
|- ( ( r = R /\ z = Z ) -> ( Fun r <-> Fun R ) ) |
| 3 |
|
oveq12 |
|- ( ( r = R /\ z = Z ) -> ( r supp z ) = ( R supp Z ) ) |
| 4 |
3
|
eleq1d |
|- ( ( r = R /\ z = Z ) -> ( ( r supp z ) e. Fin <-> ( R supp Z ) e. Fin ) ) |
| 5 |
2 4
|
anbi12d |
|- ( ( r = R /\ z = Z ) -> ( ( Fun r /\ ( r supp z ) e. Fin ) <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |
| 6 |
|
df-fsupp |
|- finSupp = { <. r , z >. | ( Fun r /\ ( r supp z ) e. Fin ) } |
| 7 |
5 6
|
brabga |
|- ( ( R e. V /\ Z e. W ) -> ( R finSupp Z <-> ( Fun R /\ ( R supp Z ) e. Fin ) ) ) |