Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isfusgr.v | |- V = ( Vtx ` G ) |
|
| Assertion | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfusgr.v | |- V = ( Vtx ` G ) |
|
| 2 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 3 | 2 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 4 | 3 | eleq1d | |- ( g = G -> ( ( Vtx ` g ) e. Fin <-> V e. Fin ) ) |
| 5 | df-fusgr | |- FinUSGraph = { g e. USGraph | ( Vtx ` g ) e. Fin } |
|
| 6 | 4 5 | elrab2 | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |