| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 2 |
1
|
isfusgr |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) ) |
| 3 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 4 |
|
hashclb |
|- ( ( Vtx ` G ) e. _V -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| 5 |
3 4
|
mp1i |
|- ( G e. USGraph -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| 6 |
5
|
pm5.32i |
|- ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |
| 7 |
2 6
|
bitri |
|- ( G e. FinUSGraph <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |