| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 | 1 | isfusgr |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) ) | 
						
							| 3 |  | fvex |  |-  ( Vtx ` G ) e. _V | 
						
							| 4 |  | hashclb |  |-  ( ( Vtx ` G ) e. _V -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( G e. USGraph -> ( ( Vtx ` G ) e. Fin <-> ( # ` ( Vtx ` G ) ) e. NN0 ) ) | 
						
							| 6 | 5 | pm5.32i |  |-  ( ( G e. USGraph /\ ( Vtx ` G ) e. Fin ) <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) | 
						
							| 7 | 2 6 | bitri |  |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ ( # ` ( Vtx ` G ) ) e. NN0 ) ) |