Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfusgr.v | |- V = ( Vtx ` G ) | |
| isfusgrf1.i | |- I = ( iEdg ` G ) | ||
| Assertion | isfusgrf1 | |- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isfusgr.v | |- V = ( Vtx ` G ) | |
| 2 | isfusgrf1.i | |- I = ( iEdg ` G ) | |
| 3 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) | 
| 4 | 1 2 | isusgrs |  |-  ( G e. W -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) | 
| 5 | 4 | anbi1d |  |-  ( G e. W -> ( ( G e. USGraph /\ V e. Fin ) <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) | 
| 6 | 3 5 | bitrid |  |-  ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |