Metamath Proof Explorer


Theorem isfusgrf1

Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses isfusgr.v
|- V = ( Vtx ` G )
isfusgrf1.i
|- I = ( iEdg ` G )
Assertion isfusgrf1
|- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) )

Proof

Step Hyp Ref Expression
1 isfusgr.v
 |-  V = ( Vtx ` G )
2 isfusgrf1.i
 |-  I = ( iEdg ` G )
3 1 isfusgr
 |-  ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) )
4 1 2 isusgrs
 |-  ( G e. W -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) )
5 4 anbi1d
 |-  ( G e. W -> ( ( G e. USGraph /\ V e. Fin ) <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) )
6 3 5 syl5bb
 |-  ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) )