Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfusgr.v | |- V = ( Vtx ` G ) |
|
isfusgrf1.i | |- I = ( iEdg ` G ) |
||
Assertion | isfusgrf1 | |- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfusgr.v | |- V = ( Vtx ` G ) |
|
2 | isfusgrf1.i | |- I = ( iEdg ` G ) |
|
3 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
4 | 1 2 | isusgrs | |- ( G e. W -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
5 | 4 | anbi1d | |- ( G e. W -> ( ( G e. USGraph /\ V e. Fin ) <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |
6 | 3 5 | syl5bb | |- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |