Description: The property of being a finite simple graph. (Contributed by AV, 3-Jan-2020) (Revised by AV, 21-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isfusgr.v | |- V = ( Vtx ` G ) |
|
| isfusgrf1.i | |- I = ( iEdg ` G ) |
||
| Assertion | isfusgrf1 | |- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfusgr.v | |- V = ( Vtx ` G ) |
|
| 2 | isfusgrf1.i | |- I = ( iEdg ` G ) |
|
| 3 | 1 | isfusgr | |- ( G e. FinUSGraph <-> ( G e. USGraph /\ V e. Fin ) ) |
| 4 | 1 2 | isusgrs | |- ( G e. W -> ( G e. USGraph <-> I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
| 5 | 4 | anbi1d | |- ( G e. W -> ( ( G e. USGraph /\ V e. Fin ) <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |
| 6 | 3 5 | bitrid | |- ( G e. W -> ( G e. FinUSGraph <-> ( I : dom I -1-1-> { x e. ~P V | ( # ` x ) = 2 } /\ V e. Fin ) ) ) |