Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( z = Z -> ( z = ( ( p + q ) + r ) <-> Z = ( ( p + q ) + r ) ) ) |
2 |
1
|
anbi2d |
|- ( z = Z -> ( ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ z = ( ( p + q ) + r ) ) <-> ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) ) |
3 |
2
|
rexbidv |
|- ( z = Z -> ( E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ z = ( ( p + q ) + r ) ) <-> E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) ) |
4 |
3
|
2rexbidv |
|- ( z = Z -> ( E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ z = ( ( p + q ) + r ) ) <-> E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) ) |
5 |
|
df-gbo |
|- GoldbachOdd = { z e. Odd | E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ z = ( ( p + q ) + r ) ) } |
6 |
4 5
|
elrab2 |
|- ( Z e. GoldbachOdd <-> ( Z e. Odd /\ E. p e. Prime E. q e. Prime E. r e. Prime ( ( p e. Odd /\ q e. Odd /\ r e. Odd ) /\ Z = ( ( p + q ) + r ) ) ) ) |