Description: Property of a group homomorphism, similar to ismhm . (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isghm.w | |- X = ( Base ` S ) |
|
| isghm.x | |- Y = ( Base ` T ) |
||
| isghm.a | |- .+ = ( +g ` S ) |
||
| isghm.b | |- .+^ = ( +g ` T ) |
||
| Assertion | isghm3 | |- ( ( S e. Grp /\ T e. Grp ) -> ( F e. ( S GrpHom T ) <-> ( F : X --> Y /\ A. u e. X A. v e. X ( F ` ( u .+ v ) ) = ( ( F ` u ) .+^ ( F ` v ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghm.w | |- X = ( Base ` S ) |
|
| 2 | isghm.x | |- Y = ( Base ` T ) |
|
| 3 | isghm.a | |- .+ = ( +g ` S ) |
|
| 4 | isghm.b | |- .+^ = ( +g ` T ) |
|
| 5 | 1 2 3 4 | isghm | |- ( F e. ( S GrpHom T ) <-> ( ( S e. Grp /\ T e. Grp ) /\ ( F : X --> Y /\ A. u e. X A. v e. X ( F ` ( u .+ v ) ) = ( ( F ` u ) .+^ ( F ` v ) ) ) ) ) |
| 6 | 5 | baib | |- ( ( S e. Grp /\ T e. Grp ) -> ( F e. ( S GrpHom T ) <-> ( F : X --> Y /\ A. u e. X A. v e. X ( F ` ( u .+ v ) ) = ( ( F ` u ) .+^ ( F ` v ) ) ) ) ) |