Step |
Hyp |
Ref |
Expression |
1 |
|
isgim.b |
|- B = ( Base ` R ) |
2 |
|
isgim.c |
|- C = ( Base ` S ) |
3 |
|
df-3an |
|- ( ( R e. Grp /\ S e. Grp /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
4 |
|
df-gim |
|- GrpIso = ( a e. Grp , b e. Grp |-> { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } ) |
5 |
|
ovex |
|- ( a GrpHom b ) e. _V |
6 |
5
|
rabex |
|- { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } e. _V |
7 |
|
oveq12 |
|- ( ( a = R /\ b = S ) -> ( a GrpHom b ) = ( R GrpHom S ) ) |
8 |
|
fveq2 |
|- ( a = R -> ( Base ` a ) = ( Base ` R ) ) |
9 |
8 1
|
eqtr4di |
|- ( a = R -> ( Base ` a ) = B ) |
10 |
|
fveq2 |
|- ( b = S -> ( Base ` b ) = ( Base ` S ) ) |
11 |
10 2
|
eqtr4di |
|- ( b = S -> ( Base ` b ) = C ) |
12 |
|
f1oeq23 |
|- ( ( ( Base ` a ) = B /\ ( Base ` b ) = C ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
13 |
9 11 12
|
syl2an |
|- ( ( a = R /\ b = S ) -> ( c : ( Base ` a ) -1-1-onto-> ( Base ` b ) <-> c : B -1-1-onto-> C ) ) |
14 |
7 13
|
rabeqbidv |
|- ( ( a = R /\ b = S ) -> { c e. ( a GrpHom b ) | c : ( Base ` a ) -1-1-onto-> ( Base ` b ) } = { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) |
15 |
4 6 14
|
elovmpo |
|- ( F e. ( R GrpIso S ) <-> ( R e. Grp /\ S e. Grp /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
16 |
|
ghmgrp1 |
|- ( F e. ( R GrpHom S ) -> R e. Grp ) |
17 |
|
ghmgrp2 |
|- ( F e. ( R GrpHom S ) -> S e. Grp ) |
18 |
16 17
|
jca |
|- ( F e. ( R GrpHom S ) -> ( R e. Grp /\ S e. Grp ) ) |
19 |
18
|
adantr |
|- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) -> ( R e. Grp /\ S e. Grp ) ) |
20 |
19
|
pm4.71ri |
|- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) <-> ( ( R e. Grp /\ S e. Grp ) /\ ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) ) |
21 |
|
f1oeq1 |
|- ( c = F -> ( c : B -1-1-onto-> C <-> F : B -1-1-onto-> C ) ) |
22 |
21
|
elrab |
|- ( F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |
23 |
22
|
anbi2i |
|- ( ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) <-> ( ( R e. Grp /\ S e. Grp ) /\ ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) ) |
24 |
20 23
|
bitr4i |
|- ( ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) <-> ( ( R e. Grp /\ S e. Grp ) /\ F e. { c e. ( R GrpHom S ) | c : B -1-1-onto-> C } ) ) |
25 |
3 15 24
|
3bitr4i |
|- ( F e. ( R GrpIso S ) <-> ( F e. ( R GrpHom S ) /\ F : B -1-1-onto-> C ) ) |