Step |
Hyp |
Ref |
Expression |
1 |
|
isgrlim.v |
|- V = ( Vtx ` G ) |
2 |
|
isgrlim.w |
|- W = ( Vtx ` H ) |
3 |
|
df-grlim |
|- GraphLocIso = ( g e. _V , h e. _V |-> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } ) |
4 |
|
elex |
|- ( G e. X -> G e. _V ) |
5 |
4
|
3ad2ant1 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> G e. _V ) |
6 |
|
elex |
|- ( H e. Y -> H e. _V ) |
7 |
6
|
3ad2ant2 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> H e. _V ) |
8 |
|
f1of |
|- ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) -> f : ( Vtx ` G ) --> ( Vtx ` H ) ) |
9 |
8
|
adantr |
|- ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) -> f : ( Vtx ` G ) --> ( Vtx ` H ) ) |
10 |
9
|
adantl |
|- ( ( ( G e. X /\ H e. Y /\ F e. Z ) /\ ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) -> f : ( Vtx ` G ) --> ( Vtx ` H ) ) |
11 |
|
fvexd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( Vtx ` G ) e. _V ) |
12 |
|
fvexd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( Vtx ` H ) e. _V ) |
13 |
10 11 12
|
fabexd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } e. _V ) |
14 |
|
eqidd |
|- ( ( g = G /\ h = H ) -> f = f ) |
15 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
16 |
15
|
adantr |
|- ( ( g = G /\ h = H ) -> ( Vtx ` g ) = ( Vtx ` G ) ) |
17 |
|
fveq2 |
|- ( h = H -> ( Vtx ` h ) = ( Vtx ` H ) ) |
18 |
17
|
adantl |
|- ( ( g = G /\ h = H ) -> ( Vtx ` h ) = ( Vtx ` H ) ) |
19 |
14 16 18
|
f1oeq123d |
|- ( ( g = G /\ h = H ) -> ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) <-> f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
20 |
|
id |
|- ( g = G -> g = G ) |
21 |
|
oveq1 |
|- ( g = G -> ( g ClNeighbVtx v ) = ( G ClNeighbVtx v ) ) |
22 |
20 21
|
oveq12d |
|- ( g = G -> ( g ISubGr ( g ClNeighbVtx v ) ) = ( G ISubGr ( G ClNeighbVtx v ) ) ) |
23 |
|
id |
|- ( h = H -> h = H ) |
24 |
|
oveq1 |
|- ( h = H -> ( h ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( f ` v ) ) ) |
25 |
23 24
|
oveq12d |
|- ( h = H -> ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) = ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) |
26 |
22 25
|
breqan12d |
|- ( ( g = G /\ h = H ) -> ( ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) |
27 |
16 26
|
raleqbidv |
|- ( ( g = G /\ h = H ) -> ( A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) <-> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) |
28 |
19 27
|
anbi12d |
|- ( ( g = G /\ h = H ) -> ( ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) <-> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
29 |
28
|
abbidv |
|- ( ( g = G /\ h = H ) -> { f | ( f : ( Vtx ` g ) -1-1-onto-> ( Vtx ` h ) /\ A. v e. ( Vtx ` g ) ( g ISubGr ( g ClNeighbVtx v ) ) ~=gr ( h ISubGr ( h ClNeighbVtx ( f ` v ) ) ) ) } = { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } ) |
30 |
3 5 7 13 29
|
elovmpod |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } ) ) |
31 |
|
f1oeq1 |
|- ( f = F -> ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) <-> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
32 |
|
fveq1 |
|- ( f = F -> ( f ` v ) = ( F ` v ) ) |
33 |
32
|
oveq2d |
|- ( f = F -> ( H ClNeighbVtx ( f ` v ) ) = ( H ClNeighbVtx ( F ` v ) ) ) |
34 |
33
|
oveq2d |
|- ( f = F -> ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) = ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
35 |
34
|
breq2d |
|- ( f = F -> ( ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) <-> ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
36 |
35
|
ralbidv |
|- ( f = F -> ( A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) <-> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
37 |
31 36
|
anbi12d |
|- ( f = F -> ( ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
38 |
37
|
elabg |
|- ( F e. Z -> ( F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
39 |
38
|
3ad2ant3 |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
40 |
|
f1oeq23 |
|- ( ( V = ( Vtx ` G ) /\ W = ( Vtx ` H ) ) -> ( F : V -1-1-onto-> W <-> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) ) |
41 |
1 2 40
|
mp2an |
|- ( F : V -1-1-onto-> W <-> F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) ) |
42 |
1
|
raleqi |
|- ( A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) <-> A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) |
43 |
41 42
|
anbi12i |
|- ( ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) <-> ( F : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) |
44 |
39 43
|
bitr4di |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. { f | ( f : ( Vtx ` G ) -1-1-onto-> ( Vtx ` H ) /\ A. v e. ( Vtx ` G ) ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) } <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |
45 |
30 44
|
bitrd |
|- ( ( G e. X /\ H e. Y /\ F e. Z ) -> ( F e. ( G GraphLocIso H ) <-> ( F : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( F ` v ) ) ) ) ) ) |