Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgrpd.b | |- ( ph -> B = ( Base ` G ) ) |
|
isgrpd.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
isgrpd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
||
isgrpd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
isgrpd.z | |- ( ph -> .0. e. B ) |
||
isgrpd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
||
isgrpd.n | |- ( ( ph /\ x e. B ) -> N e. B ) |
||
isgrpd.j | |- ( ( ph /\ x e. B ) -> ( N .+ x ) = .0. ) |
||
Assertion | isgrpd | |- ( ph -> G e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd.b | |- ( ph -> B = ( Base ` G ) ) |
|
2 | isgrpd.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
3 | isgrpd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
4 | isgrpd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
5 | isgrpd.z | |- ( ph -> .0. e. B ) |
|
6 | isgrpd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
|
7 | isgrpd.n | |- ( ( ph /\ x e. B ) -> N e. B ) |
|
8 | isgrpd.j | |- ( ( ph /\ x e. B ) -> ( N .+ x ) = .0. ) |
|
9 | oveq1 | |- ( y = N -> ( y .+ x ) = ( N .+ x ) ) |
|
10 | 9 | eqeq1d | |- ( y = N -> ( ( y .+ x ) = .0. <-> ( N .+ x ) = .0. ) ) |
11 | 10 | rspcev | |- ( ( N e. B /\ ( N .+ x ) = .0. ) -> E. y e. B ( y .+ x ) = .0. ) |
12 | 7 8 11 | syl2anc | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
13 | 1 2 3 4 5 6 12 | isgrpde | |- ( ph -> G e. Grp ) |