Metamath Proof Explorer


Theorem isgrpd

Description: Deduce a group from its properties. Unlike isgrpd2 , this one goes straight from the base properties rather than going through Mnd . N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 6-Jun-2013) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b
|- ( ph -> B = ( Base ` G ) )
isgrpd.p
|- ( ph -> .+ = ( +g ` G ) )
isgrpd.c
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )
isgrpd.a
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
isgrpd.z
|- ( ph -> .0. e. B )
isgrpd.i
|- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x )
isgrpd.n
|- ( ( ph /\ x e. B ) -> N e. B )
isgrpd.j
|- ( ( ph /\ x e. B ) -> ( N .+ x ) = .0. )
Assertion isgrpd
|- ( ph -> G e. Grp )

Proof

Step Hyp Ref Expression
1 isgrpd.b
 |-  ( ph -> B = ( Base ` G ) )
2 isgrpd.p
 |-  ( ph -> .+ = ( +g ` G ) )
3 isgrpd.c
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )
4 isgrpd.a
 |-  ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
5 isgrpd.z
 |-  ( ph -> .0. e. B )
6 isgrpd.i
 |-  ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x )
7 isgrpd.n
 |-  ( ( ph /\ x e. B ) -> N e. B )
8 isgrpd.j
 |-  ( ( ph /\ x e. B ) -> ( N .+ x ) = .0. )
9 oveq1
 |-  ( y = N -> ( y .+ x ) = ( N .+ x ) )
10 9 eqeq1d
 |-  ( y = N -> ( ( y .+ x ) = .0. <-> ( N .+ x ) = .0. ) )
11 10 rspcev
 |-  ( ( N e. B /\ ( N .+ x ) = .0. ) -> E. y e. B ( y .+ x ) = .0. )
12 7 8 11 syl2anc
 |-  ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. )
13 1 2 3 4 5 6 12 isgrpde
 |-  ( ph -> G e. Grp )