| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgrpd2.b |
|- ( ph -> B = ( Base ` G ) ) |
| 2 |
|
isgrpd2.p |
|- ( ph -> .+ = ( +g ` G ) ) |
| 3 |
|
isgrpd2.z |
|- ( ph -> .0. = ( 0g ` G ) ) |
| 4 |
|
isgrpd2.g |
|- ( ph -> G e. Mnd ) |
| 5 |
|
isgrpd2e.n |
|- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
| 6 |
5
|
ralrimiva |
|- ( ph -> A. x e. B E. y e. B ( y .+ x ) = .0. ) |
| 7 |
2
|
oveqd |
|- ( ph -> ( y .+ x ) = ( y ( +g ` G ) x ) ) |
| 8 |
7 3
|
eqeq12d |
|- ( ph -> ( ( y .+ x ) = .0. <-> ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 9 |
1 8
|
rexeqbidv |
|- ( ph -> ( E. y e. B ( y .+ x ) = .0. <-> E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 10 |
1 9
|
raleqbidv |
|- ( ph -> ( A. x e. B E. y e. B ( y .+ x ) = .0. <-> A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 11 |
6 10
|
mpbid |
|- ( ph -> A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) |
| 12 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 13 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 14 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 15 |
12 13 14
|
isgrp |
|- ( G e. Grp <-> ( G e. Mnd /\ A. x e. ( Base ` G ) E. y e. ( Base ` G ) ( y ( +g ` G ) x ) = ( 0g ` G ) ) ) |
| 16 |
4 11 15
|
sylanbrc |
|- ( ph -> G e. Grp ) |