Description: Deduce a group from its properties. In this version of isgrpd , we don't assume there is an expression for the inverse of x . (Contributed by NM, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isgrpd.b | |- ( ph -> B = ( Base ` G ) ) |
|
| isgrpd.p | |- ( ph -> .+ = ( +g ` G ) ) |
||
| isgrpd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
||
| isgrpd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
| isgrpd.z | |- ( ph -> .0. e. B ) |
||
| isgrpd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
||
| isgrpde.n | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
||
| Assertion | isgrpde | |- ( ph -> G e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd.b | |- ( ph -> B = ( Base ` G ) ) |
|
| 2 | isgrpd.p | |- ( ph -> .+ = ( +g ` G ) ) |
|
| 3 | isgrpd.c | |- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
| 4 | isgrpd.a | |- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
| 5 | isgrpd.z | |- ( ph -> .0. e. B ) |
|
| 6 | isgrpd.i | |- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x ) |
|
| 7 | isgrpde.n | |- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
|
| 8 | 3 5 6 4 7 | grprida | |- ( ( ph /\ x e. B ) -> ( x .+ .0. ) = x ) |
| 9 | 1 2 5 6 8 | grpidd | |- ( ph -> .0. = ( 0g ` G ) ) |
| 10 | 1 2 3 4 5 6 8 | ismndd | |- ( ph -> G e. Mnd ) |
| 11 | 1 2 9 10 7 | isgrpd2e | |- ( ph -> G e. Grp ) |