Metamath Proof Explorer


Theorem isgrpde

Description: Deduce a group from its properties. In this version of isgrpd , we don't assume there is an expression for the inverse of x . (Contributed by NM, 6-Jan-2015)

Ref Expression
Hypotheses isgrpd.b
|- ( ph -> B = ( Base ` G ) )
isgrpd.p
|- ( ph -> .+ = ( +g ` G ) )
isgrpd.c
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )
isgrpd.a
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
isgrpd.z
|- ( ph -> .0. e. B )
isgrpd.i
|- ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x )
isgrpde.n
|- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. )
Assertion isgrpde
|- ( ph -> G e. Grp )

Proof

Step Hyp Ref Expression
1 isgrpd.b
 |-  ( ph -> B = ( Base ` G ) )
2 isgrpd.p
 |-  ( ph -> .+ = ( +g ` G ) )
3 isgrpd.c
 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )
4 isgrpd.a
 |-  ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
5 isgrpd.z
 |-  ( ph -> .0. e. B )
6 isgrpd.i
 |-  ( ( ph /\ x e. B ) -> ( .0. .+ x ) = x )
7 isgrpde.n
 |-  ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. )
8 3 5 6 4 7 grpridd
 |-  ( ( ph /\ x e. B ) -> ( x .+ .0. ) = x )
9 1 2 5 6 8 grpidd
 |-  ( ph -> .0. = ( 0g ` G ) )
10 1 2 3 4 5 6 8 ismndd
 |-  ( ph -> G e. Mnd )
11 1 2 9 10 7 isgrpd2e
 |-  ( ph -> G e. Grp )