Metamath Proof Explorer


Theorem isgrpi

Description: Properties that determine a group. N (negative) is normally dependent on x i.e. read it as N ( x ) . (Contributed by NM, 3-Sep-2011)

Ref Expression
Hypotheses isgrpi.b
|- B = ( Base ` G )
isgrpi.p
|- .+ = ( +g ` G )
isgrpi.c
|- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B )
isgrpi.a
|- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
isgrpi.z
|- .0. e. B
isgrpi.i
|- ( x e. B -> ( .0. .+ x ) = x )
isgrpi.n
|- ( x e. B -> N e. B )
isgrpi.j
|- ( x e. B -> ( N .+ x ) = .0. )
Assertion isgrpi
|- G e. Grp

Proof

Step Hyp Ref Expression
1 isgrpi.b
 |-  B = ( Base ` G )
2 isgrpi.p
 |-  .+ = ( +g ` G )
3 isgrpi.c
 |-  ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B )
4 isgrpi.a
 |-  ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
5 isgrpi.z
 |-  .0. e. B
6 isgrpi.i
 |-  ( x e. B -> ( .0. .+ x ) = x )
7 isgrpi.n
 |-  ( x e. B -> N e. B )
8 isgrpi.j
 |-  ( x e. B -> ( N .+ x ) = .0. )
9 1 a1i
 |-  ( T. -> B = ( Base ` G ) )
10 2 a1i
 |-  ( T. -> .+ = ( +g ` G ) )
11 3 3adant1
 |-  ( ( T. /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )
12 4 adantl
 |-  ( ( T. /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
13 5 a1i
 |-  ( T. -> .0. e. B )
14 6 adantl
 |-  ( ( T. /\ x e. B ) -> ( .0. .+ x ) = x )
15 7 adantl
 |-  ( ( T. /\ x e. B ) -> N e. B )
16 8 adantl
 |-  ( ( T. /\ x e. B ) -> ( N .+ x ) = .0. )
17 9 10 11 12 13 14 15 16 isgrpd
 |-  ( T. -> G e. Grp )
18 17 mptru
 |-  G e. Grp