Step |
Hyp |
Ref |
Expression |
1 |
|
isgrpi.b |
|- B = ( Base ` G ) |
2 |
|
isgrpi.p |
|- .+ = ( +g ` G ) |
3 |
|
isgrpi.c |
|- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
4 |
|
isgrpi.a |
|- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
5 |
|
isgrpi.z |
|- .0. e. B |
6 |
|
isgrpi.i |
|- ( x e. B -> ( .0. .+ x ) = x ) |
7 |
|
isgrpi.n |
|- ( x e. B -> N e. B ) |
8 |
|
isgrpi.j |
|- ( x e. B -> ( N .+ x ) = .0. ) |
9 |
1
|
a1i |
|- ( T. -> B = ( Base ` G ) ) |
10 |
2
|
a1i |
|- ( T. -> .+ = ( +g ` G ) ) |
11 |
3
|
3adant1 |
|- ( ( T. /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
12 |
4
|
adantl |
|- ( ( T. /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
13 |
5
|
a1i |
|- ( T. -> .0. e. B ) |
14 |
6
|
adantl |
|- ( ( T. /\ x e. B ) -> ( .0. .+ x ) = x ) |
15 |
7
|
adantl |
|- ( ( T. /\ x e. B ) -> N e. B ) |
16 |
8
|
adantl |
|- ( ( T. /\ x e. B ) -> ( N .+ x ) = .0. ) |
17 |
9 10 11 12 13 14 15 16
|
isgrpd |
|- ( T. -> G e. Grp ) |
18 |
17
|
mptru |
|- G e. Grp |