| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinv.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpinv.u |
|- .0. = ( 0g ` G ) |
| 4 |
|
grpinv.n |
|- N = ( invg ` G ) |
| 5 |
1 2 3 4
|
grpinvval |
|- ( x e. B -> ( N ` x ) = ( iota_ e e. B ( e .+ x ) = .0. ) ) |
| 6 |
5
|
ad2antlr |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( N ` x ) = ( iota_ e e. B ( e .+ x ) = .0. ) ) |
| 7 |
|
simpr |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( ( M ` x ) .+ x ) = .0. ) |
| 8 |
|
simpllr |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> M : B --> B ) |
| 9 |
|
simplr |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> x e. B ) |
| 10 |
8 9
|
ffvelcdmd |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( M ` x ) e. B ) |
| 11 |
1 2 3
|
grpinveu |
|- ( ( G e. Grp /\ x e. B ) -> E! e e. B ( e .+ x ) = .0. ) |
| 12 |
11
|
ad4ant13 |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> E! e e. B ( e .+ x ) = .0. ) |
| 13 |
|
oveq1 |
|- ( e = ( M ` x ) -> ( e .+ x ) = ( ( M ` x ) .+ x ) ) |
| 14 |
13
|
eqeq1d |
|- ( e = ( M ` x ) -> ( ( e .+ x ) = .0. <-> ( ( M ` x ) .+ x ) = .0. ) ) |
| 15 |
14
|
riota2 |
|- ( ( ( M ` x ) e. B /\ E! e e. B ( e .+ x ) = .0. ) -> ( ( ( M ` x ) .+ x ) = .0. <-> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) ) |
| 16 |
10 12 15
|
syl2anc |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( ( ( M ` x ) .+ x ) = .0. <-> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) ) |
| 17 |
7 16
|
mpbid |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( iota_ e e. B ( e .+ x ) = .0. ) = ( M ` x ) ) |
| 18 |
6 17
|
eqtrd |
|- ( ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) /\ ( ( M ` x ) .+ x ) = .0. ) -> ( N ` x ) = ( M ` x ) ) |
| 19 |
18
|
ex |
|- ( ( ( G e. Grp /\ M : B --> B ) /\ x e. B ) -> ( ( ( M ` x ) .+ x ) = .0. -> ( N ` x ) = ( M ` x ) ) ) |
| 20 |
19
|
ralimdva |
|- ( ( G e. Grp /\ M : B --> B ) -> ( A. x e. B ( ( M ` x ) .+ x ) = .0. -> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
| 21 |
20
|
impr |
|- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> A. x e. B ( N ` x ) = ( M ` x ) ) |
| 22 |
1 4
|
grpinvfn |
|- N Fn B |
| 23 |
|
ffn |
|- ( M : B --> B -> M Fn B ) |
| 24 |
23
|
ad2antrl |
|- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> M Fn B ) |
| 25 |
|
eqfnfv |
|- ( ( N Fn B /\ M Fn B ) -> ( N = M <-> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
| 26 |
22 24 25
|
sylancr |
|- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> ( N = M <-> A. x e. B ( N ` x ) = ( M ` x ) ) ) |
| 27 |
21 26
|
mpbird |
|- ( ( G e. Grp /\ ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) -> N = M ) |
| 28 |
27
|
ex |
|- ( G e. Grp -> ( ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) -> N = M ) ) |
| 29 |
1 4
|
grpinvf |
|- ( G e. Grp -> N : B --> B ) |
| 30 |
1 2 3 4
|
grplinv |
|- ( ( G e. Grp /\ x e. B ) -> ( ( N ` x ) .+ x ) = .0. ) |
| 31 |
30
|
ralrimiva |
|- ( G e. Grp -> A. x e. B ( ( N ` x ) .+ x ) = .0. ) |
| 32 |
29 31
|
jca |
|- ( G e. Grp -> ( N : B --> B /\ A. x e. B ( ( N ` x ) .+ x ) = .0. ) ) |
| 33 |
|
feq1 |
|- ( N = M -> ( N : B --> B <-> M : B --> B ) ) |
| 34 |
|
fveq1 |
|- ( N = M -> ( N ` x ) = ( M ` x ) ) |
| 35 |
34
|
oveq1d |
|- ( N = M -> ( ( N ` x ) .+ x ) = ( ( M ` x ) .+ x ) ) |
| 36 |
35
|
eqeq1d |
|- ( N = M -> ( ( ( N ` x ) .+ x ) = .0. <-> ( ( M ` x ) .+ x ) = .0. ) ) |
| 37 |
36
|
ralbidv |
|- ( N = M -> ( A. x e. B ( ( N ` x ) .+ x ) = .0. <-> A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) |
| 38 |
33 37
|
anbi12d |
|- ( N = M -> ( ( N : B --> B /\ A. x e. B ( ( N ` x ) .+ x ) = .0. ) <-> ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) ) |
| 39 |
32 38
|
syl5ibcom |
|- ( G e. Grp -> ( N = M -> ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) ) ) |
| 40 |
28 39
|
impbid |
|- ( G e. Grp -> ( ( M : B --> B /\ A. x e. B ( ( M ` x ) .+ x ) = .0. ) <-> N = M ) ) |