Description: Properties that determine a group. Read N as N ( x ) . Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isgrpix.a | |- B e. _V |
|
isgrpix.b | |- .+ e. _V |
||
isgrpix.g | |- G = { <. 1 , B >. , <. 2 , .+ >. } |
||
isgrpix.2 | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
||
isgrpix.3 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
||
isgrpix.z | |- .0. e. B |
||
isgrpix.5 | |- ( x e. B -> ( .0. .+ x ) = x ) |
||
isgrpix.6 | |- ( x e. B -> N e. B ) |
||
isgrpix.7 | |- ( x e. B -> ( N .+ x ) = .0. ) |
||
Assertion | isgrpix | |- G e. Grp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpix.a | |- B e. _V |
|
2 | isgrpix.b | |- .+ e. _V |
|
3 | isgrpix.g | |- G = { <. 1 , B >. , <. 2 , .+ >. } |
|
4 | isgrpix.2 | |- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
|
5 | isgrpix.3 | |- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
|
6 | isgrpix.z | |- .0. e. B |
|
7 | isgrpix.5 | |- ( x e. B -> ( .0. .+ x ) = x ) |
|
8 | isgrpix.6 | |- ( x e. B -> N e. B ) |
|
9 | isgrpix.7 | |- ( x e. B -> ( N .+ x ) = .0. ) |
|
10 | 1 2 3 | grpbasex | |- B = ( Base ` G ) |
11 | 1 2 3 | grpplusgx | |- .+ = ( +g ` G ) |
12 | 10 11 4 5 6 7 8 9 | isgrpi | |- G e. Grp |