Metamath Proof Explorer


Theorem isgrpix

Description: Properties that determine a group. Read N as N ( x ) . Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypotheses isgrpix.a
|- B e. _V
isgrpix.b
|- .+ e. _V
isgrpix.g
|- G = { <. 1 , B >. , <. 2 , .+ >. }
isgrpix.2
|- ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B )
isgrpix.3
|- ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
isgrpix.z
|- .0. e. B
isgrpix.5
|- ( x e. B -> ( .0. .+ x ) = x )
isgrpix.6
|- ( x e. B -> N e. B )
isgrpix.7
|- ( x e. B -> ( N .+ x ) = .0. )
Assertion isgrpix
|- G e. Grp

Proof

Step Hyp Ref Expression
1 isgrpix.a
 |-  B e. _V
2 isgrpix.b
 |-  .+ e. _V
3 isgrpix.g
 |-  G = { <. 1 , B >. , <. 2 , .+ >. }
4 isgrpix.2
 |-  ( ( x e. B /\ y e. B ) -> ( x .+ y ) e. B )
5 isgrpix.3
 |-  ( ( x e. B /\ y e. B /\ z e. B ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )
6 isgrpix.z
 |-  .0. e. B
7 isgrpix.5
 |-  ( x e. B -> ( .0. .+ x ) = x )
8 isgrpix.6
 |-  ( x e. B -> N e. B )
9 isgrpix.7
 |-  ( x e. B -> ( N .+ x ) = .0. )
10 1 2 3 grpbasex
 |-  B = ( Base ` G )
11 1 2 3 grpplusgx
 |-  .+ = ( +g ` G )
12 10 11 4 5 6 7 8 9 isgrpi
 |-  G e. Grp