| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzfid | 
							 |-  ( n e. NN -> ( 1 ... n ) e. Fin )  | 
						
						
							| 2 | 
							
								
							 | 
							ficardom | 
							 |-  ( ( 1 ... n ) e. Fin -> ( card ` ( 1 ... n ) ) e. _om )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							syl | 
							 |-  ( n e. NN -> ( card ` ( 1 ... n ) ) e. _om )  | 
						
						
							| 4 | 
							
								
							 | 
							isinf | 
							 |-  ( -. A e. Fin -> A. a e. _om E. x ( x C_ A /\ x ~~ a ) )  | 
						
						
							| 5 | 
							
								
							 | 
							breq2 | 
							 |-  ( a = ( card ` ( 1 ... n ) ) -> ( x ~~ a <-> x ~~ ( card ` ( 1 ... n ) ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi2d | 
							 |-  ( a = ( card ` ( 1 ... n ) ) -> ( ( x C_ A /\ x ~~ a ) <-> ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							exbidv | 
							 |-  ( a = ( card ` ( 1 ... n ) ) -> ( E. x ( x C_ A /\ x ~~ a ) <-> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rspcva | 
							 |-  ( ( ( card ` ( 1 ... n ) ) e. _om /\ A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) )  | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							syl2anr | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							velpw | 
							 |-  ( x e. ~P A <-> x C_ A )  | 
						
						
							| 11 | 
							
								10
							 | 
							biimpri | 
							 |-  ( x C_ A -> x e. ~P A )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> ( x C_ A -> x e. ~P A ) )  | 
						
						
							| 13 | 
							
								
							 | 
							hasheni | 
							 |-  ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							hashcard | 
							 |-  ( ( 1 ... n ) e. Fin -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							syl | 
							 |-  ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( n e. NN -> n e. NN0 )  | 
						
						
							| 18 | 
							
								
							 | 
							hashfz1 | 
							 |-  ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( n e. NN -> ( # ` ( 1 ... n ) ) = n )  | 
						
						
							| 20 | 
							
								16 19
							 | 
							eqtrd | 
							 |-  ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = n )  | 
						
						
							| 21 | 
							
								20
							 | 
							ad2antlr | 
							 |-  ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` ( card ` ( 1 ... n ) ) ) = n )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							eqtrd | 
							 |-  ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = n )  | 
						
						
							| 23 | 
							
								22
							 | 
							ex | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = n ) )  | 
						
						
							| 24 | 
							
								12 23
							 | 
							anim12d | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> ( ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( x e. ~P A /\ ( # ` x ) = n ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eximdv | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> ( E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) )  | 
						
						
							| 26 | 
							
								9 25
							 | 
							mpd | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) )  | 
						
						
							| 27 | 
							
								
							 | 
							df-rex | 
							 |-  ( E. x e. ~P A ( # ` x ) = n <-> E. x ( x e. ~P A /\ ( # ` x ) = n ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylibr | 
							 |-  ( ( -. A e. Fin /\ n e. NN ) -> E. x e. ~P A ( # ` x ) = n )  | 
						
						
							| 29 | 
							
								28
							 | 
							ralrimiva | 
							 |-  ( -. A e. Fin -> A. n e. NN E. x e. ~P A ( # ` x ) = n )  |