Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( n e. NN -> ( 1 ... n ) e. Fin ) |
2 |
|
ficardom |
|- ( ( 1 ... n ) e. Fin -> ( card ` ( 1 ... n ) ) e. _om ) |
3 |
1 2
|
syl |
|- ( n e. NN -> ( card ` ( 1 ... n ) ) e. _om ) |
4 |
|
isinf |
|- ( -. A e. Fin -> A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) |
5 |
|
breq2 |
|- ( a = ( card ` ( 1 ... n ) ) -> ( x ~~ a <-> x ~~ ( card ` ( 1 ... n ) ) ) ) |
6 |
5
|
anbi2d |
|- ( a = ( card ` ( 1 ... n ) ) -> ( ( x C_ A /\ x ~~ a ) <-> ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
7 |
6
|
exbidv |
|- ( a = ( card ` ( 1 ... n ) ) -> ( E. x ( x C_ A /\ x ~~ a ) <-> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) ) |
8 |
7
|
rspcva |
|- ( ( ( card ` ( 1 ... n ) ) e. _om /\ A. a e. _om E. x ( x C_ A /\ x ~~ a ) ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
9 |
3 4 8
|
syl2anr |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) ) |
10 |
|
velpw |
|- ( x e. ~P A <-> x C_ A ) |
11 |
10
|
biimpri |
|- ( x C_ A -> x e. ~P A ) |
12 |
11
|
a1i |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( x C_ A -> x e. ~P A ) ) |
13 |
|
hasheni |
|- ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
14 |
13
|
adantl |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = ( # ` ( card ` ( 1 ... n ) ) ) ) |
15 |
|
hashcard |
|- ( ( 1 ... n ) e. Fin -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
16 |
1 15
|
syl |
|- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
17 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
18 |
|
hashfz1 |
|- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
19 |
17 18
|
syl |
|- ( n e. NN -> ( # ` ( 1 ... n ) ) = n ) |
20 |
16 19
|
eqtrd |
|- ( n e. NN -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
21 |
20
|
ad2antlr |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` ( card ` ( 1 ... n ) ) ) = n ) |
22 |
14 21
|
eqtrd |
|- ( ( ( -. A e. Fin /\ n e. NN ) /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( # ` x ) = n ) |
23 |
22
|
ex |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( x ~~ ( card ` ( 1 ... n ) ) -> ( # ` x ) = n ) ) |
24 |
12 23
|
anim12d |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
25 |
24
|
eximdv |
|- ( ( -. A e. Fin /\ n e. NN ) -> ( E. x ( x C_ A /\ x ~~ ( card ` ( 1 ... n ) ) ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) ) |
26 |
9 25
|
mpd |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
27 |
|
df-rex |
|- ( E. x e. ~P A ( # ` x ) = n <-> E. x ( x e. ~P A /\ ( # ` x ) = n ) ) |
28 |
26 27
|
sylibr |
|- ( ( -. A e. Fin /\ n e. NN ) -> E. x e. ~P A ( # ` x ) = n ) |
29 |
28
|
ralrimiva |
|- ( -. A e. Fin -> A. n e. NN E. x e. ~P A ( # ` x ) = n ) |