Metamath Proof Explorer


Theorem ishaus3

Description: A topological space is Hausdorff iff it is both T_0 and R_1 (where R_1 means that any two topologically distinct points are separated by neighborhoods). (Contributed by Mario Carneiro, 25-Aug-2015)

Ref Expression
Assertion ishaus3
|- ( J e. Haus <-> ( J e. Kol2 /\ ( KQ ` J ) e. Haus ) )

Proof

Step Hyp Ref Expression
1 haust1
 |-  ( J e. Haus -> J e. Fre )
2 t1t0
 |-  ( J e. Fre -> J e. Kol2 )
3 1 2 syl
 |-  ( J e. Haus -> J e. Kol2 )
4 haushmph
 |-  ( J ~= ( KQ ` J ) -> ( J e. Haus -> ( KQ ` J ) e. Haus ) )
5 haushmph
 |-  ( ( KQ ` J ) ~= J -> ( ( KQ ` J ) e. Haus -> J e. Haus ) )
6 3 4 5 ist1-5lem
 |-  ( J e. Haus <-> ( J e. Kol2 /\ ( KQ ` J ) e. Haus ) )