Step |
Hyp |
Ref |
Expression |
1 |
|
hlress.f |
|- F = ( Scalar ` W ) |
2 |
|
hlress.k |
|- K = ( Base ` F ) |
3 |
|
ishl |
|- ( W e. CHil <-> ( W e. Ban /\ W e. CPreHil ) ) |
4 |
|
df-3an |
|- ( ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) |
5 |
|
3ancomb |
|- ( ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) <-> ( W e. CMetSp /\ K e. { RR , CC } /\ W e. CPreHil ) ) |
6 |
|
cphnvc |
|- ( W e. CPreHil -> W e. NrmVec ) |
7 |
1
|
isbn |
|- ( W e. Ban <-> ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) ) |
8 |
|
3anass |
|- ( ( W e. NrmVec /\ W e. CMetSp /\ F e. CMetSp ) <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) |
9 |
7 8
|
bitri |
|- ( W e. Ban <-> ( W e. NrmVec /\ ( W e. CMetSp /\ F e. CMetSp ) ) ) |
10 |
9
|
baib |
|- ( W e. NrmVec -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) |
11 |
6 10
|
syl |
|- ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ F e. CMetSp ) ) ) |
12 |
1 2
|
cphsca |
|- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
13 |
12
|
eleq1d |
|- ( W e. CPreHil -> ( F e. CMetSp <-> ( CCfld |`s K ) e. CMetSp ) ) |
14 |
1 2
|
cphsubrg |
|- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
15 |
|
cphlvec |
|- ( W e. CPreHil -> W e. LVec ) |
16 |
1
|
lvecdrng |
|- ( W e. LVec -> F e. DivRing ) |
17 |
15 16
|
syl |
|- ( W e. CPreHil -> F e. DivRing ) |
18 |
12 17
|
eqeltrrd |
|- ( W e. CPreHil -> ( CCfld |`s K ) e. DivRing ) |
19 |
|
eqid |
|- ( CCfld |`s K ) = ( CCfld |`s K ) |
20 |
19
|
cncdrg |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) -> K e. { RR , CC } ) |
21 |
20
|
3expia |
|- ( ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing ) -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) |
22 |
14 18 21
|
syl2anc |
|- ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp -> K e. { RR , CC } ) ) |
23 |
|
elpri |
|- ( K e. { RR , CC } -> ( K = RR \/ K = CC ) ) |
24 |
|
oveq2 |
|- ( K = RR -> ( CCfld |`s K ) = ( CCfld |`s RR ) ) |
25 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
26 |
25
|
recld2 |
|- RR e. ( Clsd ` ( TopOpen ` CCfld ) ) |
27 |
|
cncms |
|- CCfld e. CMetSp |
28 |
|
ax-resscn |
|- RR C_ CC |
29 |
|
eqid |
|- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
30 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
31 |
29 30 25
|
cmsss |
|- ( ( CCfld e. CMetSp /\ RR C_ CC ) -> ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) ) |
32 |
27 28 31
|
mp2an |
|- ( ( CCfld |`s RR ) e. CMetSp <-> RR e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
33 |
26 32
|
mpbir |
|- ( CCfld |`s RR ) e. CMetSp |
34 |
24 33
|
eqeltrdi |
|- ( K = RR -> ( CCfld |`s K ) e. CMetSp ) |
35 |
|
oveq2 |
|- ( K = CC -> ( CCfld |`s K ) = ( CCfld |`s CC ) ) |
36 |
30
|
ressid |
|- ( CCfld e. CMetSp -> ( CCfld |`s CC ) = CCfld ) |
37 |
27 36
|
ax-mp |
|- ( CCfld |`s CC ) = CCfld |
38 |
37 27
|
eqeltri |
|- ( CCfld |`s CC ) e. CMetSp |
39 |
35 38
|
eqeltrdi |
|- ( K = CC -> ( CCfld |`s K ) e. CMetSp ) |
40 |
34 39
|
jaoi |
|- ( ( K = RR \/ K = CC ) -> ( CCfld |`s K ) e. CMetSp ) |
41 |
23 40
|
syl |
|- ( K e. { RR , CC } -> ( CCfld |`s K ) e. CMetSp ) |
42 |
22 41
|
impbid1 |
|- ( W e. CPreHil -> ( ( CCfld |`s K ) e. CMetSp <-> K e. { RR , CC } ) ) |
43 |
13 42
|
bitrd |
|- ( W e. CPreHil -> ( F e. CMetSp <-> K e. { RR , CC } ) ) |
44 |
43
|
anbi2d |
|- ( W e. CPreHil -> ( ( W e. CMetSp /\ F e. CMetSp ) <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) |
45 |
11 44
|
bitrd |
|- ( W e. CPreHil -> ( W e. Ban <-> ( W e. CMetSp /\ K e. { RR , CC } ) ) ) |
46 |
45
|
pm5.32ri |
|- ( ( W e. Ban /\ W e. CPreHil ) <-> ( ( W e. CMetSp /\ K e. { RR , CC } ) /\ W e. CPreHil ) ) |
47 |
4 5 46
|
3bitr4ri |
|- ( ( W e. Ban /\ W e. CPreHil ) <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |
48 |
3 47
|
bitri |
|- ( W e. CHil <-> ( W e. CMetSp /\ W e. CPreHil /\ K e. { RR , CC } ) ) |