Step |
Hyp |
Ref |
Expression |
1 |
|
ishlat.b |
|- B = ( Base ` K ) |
2 |
|
ishlat.l |
|- .<_ = ( le ` K ) |
3 |
|
ishlat.s |
|- .< = ( lt ` K ) |
4 |
|
ishlat.j |
|- .\/ = ( join ` K ) |
5 |
|
ishlat.z |
|- .0. = ( 0. ` K ) |
6 |
|
ishlat.u |
|- .1. = ( 1. ` K ) |
7 |
|
ishlat.a |
|- A = ( Atoms ` K ) |
8 |
|
fveq2 |
|- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
9 |
8 7
|
eqtr4di |
|- ( k = K -> ( Atoms ` k ) = A ) |
10 |
|
fveq2 |
|- ( k = K -> ( le ` k ) = ( le ` K ) ) |
11 |
10 2
|
eqtr4di |
|- ( k = K -> ( le ` k ) = .<_ ) |
12 |
11
|
breqd |
|- ( k = K -> ( z ( le ` k ) ( x ( join ` k ) y ) <-> z .<_ ( x ( join ` k ) y ) ) ) |
13 |
|
fveq2 |
|- ( k = K -> ( join ` k ) = ( join ` K ) ) |
14 |
13 4
|
eqtr4di |
|- ( k = K -> ( join ` k ) = .\/ ) |
15 |
14
|
oveqd |
|- ( k = K -> ( x ( join ` k ) y ) = ( x .\/ y ) ) |
16 |
15
|
breq2d |
|- ( k = K -> ( z .<_ ( x ( join ` k ) y ) <-> z .<_ ( x .\/ y ) ) ) |
17 |
12 16
|
bitrd |
|- ( k = K -> ( z ( le ` k ) ( x ( join ` k ) y ) <-> z .<_ ( x .\/ y ) ) ) |
18 |
17
|
3anbi3d |
|- ( k = K -> ( ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) <-> ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) |
19 |
9 18
|
rexeqbidv |
|- ( k = K -> ( E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) <-> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) |
20 |
19
|
imbi2d |
|- ( k = K -> ( ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
21 |
9 20
|
raleqbidv |
|- ( k = K -> ( A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
22 |
9 21
|
raleqbidv |
|- ( k = K -> ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) <-> A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) ) ) |
23 |
|
fveq2 |
|- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
24 |
23 1
|
eqtr4di |
|- ( k = K -> ( Base ` k ) = B ) |
25 |
|
fveq2 |
|- ( k = K -> ( lt ` k ) = ( lt ` K ) ) |
26 |
25 3
|
eqtr4di |
|- ( k = K -> ( lt ` k ) = .< ) |
27 |
26
|
breqd |
|- ( k = K -> ( ( 0. ` k ) ( lt ` k ) x <-> ( 0. ` k ) .< x ) ) |
28 |
|
fveq2 |
|- ( k = K -> ( 0. ` k ) = ( 0. ` K ) ) |
29 |
28 5
|
eqtr4di |
|- ( k = K -> ( 0. ` k ) = .0. ) |
30 |
29
|
breq1d |
|- ( k = K -> ( ( 0. ` k ) .< x <-> .0. .< x ) ) |
31 |
27 30
|
bitrd |
|- ( k = K -> ( ( 0. ` k ) ( lt ` k ) x <-> .0. .< x ) ) |
32 |
26
|
breqd |
|- ( k = K -> ( x ( lt ` k ) y <-> x .< y ) ) |
33 |
31 32
|
anbi12d |
|- ( k = K -> ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) <-> ( .0. .< x /\ x .< y ) ) ) |
34 |
26
|
breqd |
|- ( k = K -> ( y ( lt ` k ) z <-> y .< z ) ) |
35 |
26
|
breqd |
|- ( k = K -> ( z ( lt ` k ) ( 1. ` k ) <-> z .< ( 1. ` k ) ) ) |
36 |
|
fveq2 |
|- ( k = K -> ( 1. ` k ) = ( 1. ` K ) ) |
37 |
36 6
|
eqtr4di |
|- ( k = K -> ( 1. ` k ) = .1. ) |
38 |
37
|
breq2d |
|- ( k = K -> ( z .< ( 1. ` k ) <-> z .< .1. ) ) |
39 |
35 38
|
bitrd |
|- ( k = K -> ( z ( lt ` k ) ( 1. ` k ) <-> z .< .1. ) ) |
40 |
34 39
|
anbi12d |
|- ( k = K -> ( ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) <-> ( y .< z /\ z .< .1. ) ) ) |
41 |
33 40
|
anbi12d |
|- ( k = K -> ( ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
42 |
24 41
|
rexeqbidv |
|- ( k = K -> ( E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
43 |
24 42
|
rexeqbidv |
|- ( k = K -> ( E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
44 |
24 43
|
rexeqbidv |
|- ( k = K -> ( E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) <-> E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) |
45 |
22 44
|
anbi12d |
|- ( k = K -> ( ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) /\ E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) ) <-> ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
46 |
|
df-hlat |
|- HL = { k e. ( ( OML i^i CLat ) i^i CvLat ) | ( A. x e. ( Atoms ` k ) A. y e. ( Atoms ` k ) ( x =/= y -> E. z e. ( Atoms ` k ) ( z =/= x /\ z =/= y /\ z ( le ` k ) ( x ( join ` k ) y ) ) ) /\ E. x e. ( Base ` k ) E. y e. ( Base ` k ) E. z e. ( Base ` k ) ( ( ( 0. ` k ) ( lt ` k ) x /\ x ( lt ` k ) y ) /\ ( y ( lt ` k ) z /\ z ( lt ` k ) ( 1. ` k ) ) ) ) } |
47 |
45 46
|
elrab2 |
|- ( K e. HL <-> ( K e. ( ( OML i^i CLat ) i^i CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
48 |
|
elin |
|- ( K e. ( OML i^i CLat ) <-> ( K e. OML /\ K e. CLat ) ) |
49 |
48
|
anbi1i |
|- ( ( K e. ( OML i^i CLat ) /\ K e. CvLat ) <-> ( ( K e. OML /\ K e. CLat ) /\ K e. CvLat ) ) |
50 |
|
elin |
|- ( K e. ( ( OML i^i CLat ) i^i CvLat ) <-> ( K e. ( OML i^i CLat ) /\ K e. CvLat ) ) |
51 |
|
df-3an |
|- ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) <-> ( ( K e. OML /\ K e. CLat ) /\ K e. CvLat ) ) |
52 |
49 50 51
|
3bitr4ri |
|- ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) <-> K e. ( ( OML i^i CLat ) i^i CvLat ) ) |
53 |
52
|
anbi1i |
|- ( ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) <-> ( K e. ( ( OML i^i CLat ) i^i CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |
54 |
47 53
|
bitr4i |
|- ( K e. HL <-> ( ( K e. OML /\ K e. CLat /\ K e. CvLat ) /\ ( A. x e. A A. y e. A ( x =/= y -> E. z e. A ( z =/= x /\ z =/= y /\ z .<_ ( x .\/ y ) ) ) /\ E. x e. B E. y e. B E. z e. B ( ( .0. .< x /\ x .< y ) /\ ( y .< z /\ z .< .1. ) ) ) ) ) |