Step |
Hyp |
Ref |
Expression |
1 |
|
ishlg.p |
|- P = ( Base ` G ) |
2 |
|
ishlg.i |
|- I = ( Itv ` G ) |
3 |
|
ishlg.k |
|- K = ( hlG ` G ) |
4 |
|
ishlg.a |
|- ( ph -> A e. P ) |
5 |
|
ishlg.b |
|- ( ph -> B e. P ) |
6 |
|
ishlg.c |
|- ( ph -> C e. P ) |
7 |
|
ishlg.g |
|- ( ph -> G e. V ) |
8 |
|
simpl |
|- ( ( a = A /\ b = B ) -> a = A ) |
9 |
8
|
neeq1d |
|- ( ( a = A /\ b = B ) -> ( a =/= C <-> A =/= C ) ) |
10 |
|
simpr |
|- ( ( a = A /\ b = B ) -> b = B ) |
11 |
10
|
neeq1d |
|- ( ( a = A /\ b = B ) -> ( b =/= C <-> B =/= C ) ) |
12 |
10
|
oveq2d |
|- ( ( a = A /\ b = B ) -> ( C I b ) = ( C I B ) ) |
13 |
8 12
|
eleq12d |
|- ( ( a = A /\ b = B ) -> ( a e. ( C I b ) <-> A e. ( C I B ) ) ) |
14 |
8
|
oveq2d |
|- ( ( a = A /\ b = B ) -> ( C I a ) = ( C I A ) ) |
15 |
10 14
|
eleq12d |
|- ( ( a = A /\ b = B ) -> ( b e. ( C I a ) <-> B e. ( C I A ) ) ) |
16 |
13 15
|
orbi12d |
|- ( ( a = A /\ b = B ) -> ( ( a e. ( C I b ) \/ b e. ( C I a ) ) <-> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) |
17 |
9 11 16
|
3anbi123d |
|- ( ( a = A /\ b = B ) -> ( ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
18 |
|
eqid |
|- { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } = { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } |
19 |
17 18
|
brab2a |
|- ( A { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } B <-> ( ( A e. P /\ B e. P ) /\ ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |
20 |
19
|
a1i |
|- ( ph -> ( A { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } B <-> ( ( A e. P /\ B e. P ) /\ ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) ) |
21 |
|
elex |
|- ( G e. V -> G e. _V ) |
22 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
23 |
22 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = P ) |
24 |
23
|
eleq2d |
|- ( g = G -> ( a e. ( Base ` g ) <-> a e. P ) ) |
25 |
23
|
eleq2d |
|- ( g = G -> ( b e. ( Base ` g ) <-> b e. P ) ) |
26 |
24 25
|
anbi12d |
|- ( g = G -> ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) <-> ( a e. P /\ b e. P ) ) ) |
27 |
|
fveq2 |
|- ( g = G -> ( Itv ` g ) = ( Itv ` G ) ) |
28 |
27 2
|
eqtr4di |
|- ( g = G -> ( Itv ` g ) = I ) |
29 |
28
|
oveqd |
|- ( g = G -> ( c ( Itv ` g ) b ) = ( c I b ) ) |
30 |
29
|
eleq2d |
|- ( g = G -> ( a e. ( c ( Itv ` g ) b ) <-> a e. ( c I b ) ) ) |
31 |
28
|
oveqd |
|- ( g = G -> ( c ( Itv ` g ) a ) = ( c I a ) ) |
32 |
31
|
eleq2d |
|- ( g = G -> ( b e. ( c ( Itv ` g ) a ) <-> b e. ( c I a ) ) ) |
33 |
30 32
|
orbi12d |
|- ( g = G -> ( ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) <-> ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) |
34 |
33
|
3anbi3d |
|- ( g = G -> ( ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) <-> ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) ) |
35 |
26 34
|
anbi12d |
|- ( g = G -> ( ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) <-> ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) ) ) |
36 |
35
|
opabbidv |
|- ( g = G -> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } = { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } ) |
37 |
23 36
|
mpteq12dv |
|- ( g = G -> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) = ( c e. P |-> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } ) ) |
38 |
|
df-hlg |
|- hlG = ( g e. _V |-> ( c e. ( Base ` g ) |-> { <. a , b >. | ( ( a e. ( Base ` g ) /\ b e. ( Base ` g ) ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c ( Itv ` g ) b ) \/ b e. ( c ( Itv ` g ) a ) ) ) ) } ) ) |
39 |
37 38 1
|
mptfvmpt |
|- ( G e. _V -> ( hlG ` G ) = ( c e. P |-> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } ) ) |
40 |
7 21 39
|
3syl |
|- ( ph -> ( hlG ` G ) = ( c e. P |-> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } ) ) |
41 |
3 40
|
syl5eq |
|- ( ph -> K = ( c e. P |-> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } ) ) |
42 |
|
neeq2 |
|- ( c = C -> ( a =/= c <-> a =/= C ) ) |
43 |
|
neeq2 |
|- ( c = C -> ( b =/= c <-> b =/= C ) ) |
44 |
|
oveq1 |
|- ( c = C -> ( c I b ) = ( C I b ) ) |
45 |
44
|
eleq2d |
|- ( c = C -> ( a e. ( c I b ) <-> a e. ( C I b ) ) ) |
46 |
|
oveq1 |
|- ( c = C -> ( c I a ) = ( C I a ) ) |
47 |
46
|
eleq2d |
|- ( c = C -> ( b e. ( c I a ) <-> b e. ( C I a ) ) ) |
48 |
45 47
|
orbi12d |
|- ( c = C -> ( ( a e. ( c I b ) \/ b e. ( c I a ) ) <-> ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) |
49 |
42 43 48
|
3anbi123d |
|- ( c = C -> ( ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) <-> ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) ) |
50 |
49
|
anbi2d |
|- ( c = C -> ( ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) <-> ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) ) ) |
51 |
50
|
opabbidv |
|- ( c = C -> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } = { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } ) |
52 |
51
|
adantl |
|- ( ( ph /\ c = C ) -> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= c /\ b =/= c /\ ( a e. ( c I b ) \/ b e. ( c I a ) ) ) ) } = { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } ) |
53 |
1
|
fvexi |
|- P e. _V |
54 |
53 53
|
xpex |
|- ( P X. P ) e. _V |
55 |
|
opabssxp |
|- { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } C_ ( P X. P ) |
56 |
54 55
|
ssexi |
|- { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } e. _V |
57 |
56
|
a1i |
|- ( ph -> { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } e. _V ) |
58 |
41 52 6 57
|
fvmptd |
|- ( ph -> ( K ` C ) = { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } ) |
59 |
58
|
breqd |
|- ( ph -> ( A ( K ` C ) B <-> A { <. a , b >. | ( ( a e. P /\ b e. P ) /\ ( a =/= C /\ b =/= C /\ ( a e. ( C I b ) \/ b e. ( C I a ) ) ) ) } B ) ) |
60 |
4 5
|
jca |
|- ( ph -> ( A e. P /\ B e. P ) ) |
61 |
60
|
biantrurd |
|- ( ph -> ( ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) <-> ( ( A e. P /\ B e. P ) /\ ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) ) |
62 |
20 59 61
|
3bitr4d |
|- ( ph -> ( A ( K ` C ) B <-> ( A =/= C /\ B =/= C /\ ( A e. ( C I B ) \/ B e. ( C I A ) ) ) ) ) |