Step |
Hyp |
Ref |
Expression |
1 |
|
hmoval.8 |
|- H = ( HmOp ` U ) |
2 |
|
hmoval.9 |
|- A = ( U adj U ) |
3 |
1 2
|
hmoval |
|- ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } ) |
4 |
3
|
eleq2d |
|- ( U e. NrmCVec -> ( T e. H <-> T e. { t e. dom A | ( A ` t ) = t } ) ) |
5 |
|
fveq2 |
|- ( t = T -> ( A ` t ) = ( A ` T ) ) |
6 |
|
id |
|- ( t = T -> t = T ) |
7 |
5 6
|
eqeq12d |
|- ( t = T -> ( ( A ` t ) = t <-> ( A ` T ) = T ) ) |
8 |
7
|
elrab |
|- ( T e. { t e. dom A | ( A ` t ) = t } <-> ( T e. dom A /\ ( A ` T ) = T ) ) |
9 |
4 8
|
bitrdi |
|- ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) ) |