Metamath Proof Explorer


Theorem ishmo

Description: The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hmoval.8
|- H = ( HmOp ` U )
hmoval.9
|- A = ( U adj U )
Assertion ishmo
|- ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) )

Proof

Step Hyp Ref Expression
1 hmoval.8
 |-  H = ( HmOp ` U )
2 hmoval.9
 |-  A = ( U adj U )
3 1 2 hmoval
 |-  ( U e. NrmCVec -> H = { t e. dom A | ( A ` t ) = t } )
4 3 eleq2d
 |-  ( U e. NrmCVec -> ( T e. H <-> T e. { t e. dom A | ( A ` t ) = t } ) )
5 fveq2
 |-  ( t = T -> ( A ` t ) = ( A ` T ) )
6 id
 |-  ( t = T -> t = T )
7 5 6 eqeq12d
 |-  ( t = T -> ( ( A ` t ) = t <-> ( A ` T ) = T ) )
8 7 elrab
 |-  ( T e. { t e. dom A | ( A ` t ) = t } <-> ( T e. dom A /\ ( A ` T ) = T ) )
9 4 8 bitrdi
 |-  ( U e. NrmCVec -> ( T e. H <-> ( T e. dom A /\ ( A ` T ) = T ) ) )