| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							feq1 | 
							 |-  ( g = F -> ( g : RR --> RR <-> F : RR --> RR ) )  | 
						
						
							| 2 | 
							
								
							 | 
							rneq | 
							 |-  ( g = F -> ran g = ran F )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq1d | 
							 |-  ( g = F -> ( ran g e. Fin <-> ran F e. Fin ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cnveq | 
							 |-  ( g = F -> `' g = `' F )  | 
						
						
							| 5 | 
							
								4
							 | 
							imaeq1d | 
							 |-  ( g = F -> ( `' g " ( RR \ { 0 } ) ) = ( `' F " ( RR \ { 0 } ) ) ) | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							 |-  ( g = F -> ( vol ` ( `' g " ( RR \ { 0 } ) ) ) = ( vol ` ( `' F " ( RR \ { 0 } ) ) ) ) | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1d | 
							 |-  ( g = F -> ( ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR <-> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) | 
						
						
							| 8 | 
							
								1 3 7
							 | 
							3anbi123d | 
							 |-  ( g = F -> ( ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) <-> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) | 
						
						
							| 9 | 
							
								
							 | 
							sumex | 
							 |-  sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) e. _V | 
						
						
							| 10 | 
							
								
							 | 
							df-itg1 | 
							 |-  S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) | 
						
						
							| 11 | 
							
								9 10
							 | 
							dmmpti | 
							 |-  dom S.1 = { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } | 
						
						
							| 12 | 
							
								8 11
							 | 
							elrab2 | 
							 |-  ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |