Step |
Hyp |
Ref |
Expression |
1 |
|
feq1 |
|- ( g = F -> ( g : RR --> RR <-> F : RR --> RR ) ) |
2 |
|
rneq |
|- ( g = F -> ran g = ran F ) |
3 |
2
|
eleq1d |
|- ( g = F -> ( ran g e. Fin <-> ran F e. Fin ) ) |
4 |
|
cnveq |
|- ( g = F -> `' g = `' F ) |
5 |
4
|
imaeq1d |
|- ( g = F -> ( `' g " ( RR \ { 0 } ) ) = ( `' F " ( RR \ { 0 } ) ) ) |
6 |
5
|
fveq2d |
|- ( g = F -> ( vol ` ( `' g " ( RR \ { 0 } ) ) ) = ( vol ` ( `' F " ( RR \ { 0 } ) ) ) ) |
7 |
6
|
eleq1d |
|- ( g = F -> ( ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR <-> ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) |
8 |
1 3 7
|
3anbi123d |
|- ( g = F -> ( ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) <-> ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |
9 |
|
sumex |
|- sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) e. _V |
10 |
|
df-itg1 |
|- S.1 = ( f e. { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |-> sum_ x e. ( ran f \ { 0 } ) ( x x. ( vol ` ( `' f " { x } ) ) ) ) |
11 |
9 10
|
dmmpti |
|- dom S.1 = { g e. MblFn | ( g : RR --> RR /\ ran g e. Fin /\ ( vol ` ( `' g " ( RR \ { 0 } ) ) ) e. RR ) } |
12 |
8 11
|
elrab2 |
|- ( F e. dom S.1 <-> ( F e. MblFn /\ ( F : RR --> RR /\ ran F e. Fin /\ ( vol ` ( `' F " ( RR \ { 0 } ) ) ) e. RR ) ) ) |