Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( n = (/) -> ( x ~~ n <-> x ~~ (/) ) ) |
2 |
1
|
anbi2d |
|- ( n = (/) -> ( ( x C_ A /\ x ~~ n ) <-> ( x C_ A /\ x ~~ (/) ) ) ) |
3 |
2
|
exbidv |
|- ( n = (/) -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. x ( x C_ A /\ x ~~ (/) ) ) ) |
4 |
|
breq2 |
|- ( n = m -> ( x ~~ n <-> x ~~ m ) ) |
5 |
4
|
anbi2d |
|- ( n = m -> ( ( x C_ A /\ x ~~ n ) <-> ( x C_ A /\ x ~~ m ) ) ) |
6 |
5
|
exbidv |
|- ( n = m -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. x ( x C_ A /\ x ~~ m ) ) ) |
7 |
|
sseq1 |
|- ( x = y -> ( x C_ A <-> y C_ A ) ) |
8 |
7
|
adantl |
|- ( ( n = suc m /\ x = y ) -> ( x C_ A <-> y C_ A ) ) |
9 |
|
breq1 |
|- ( x = y -> ( x ~~ n <-> y ~~ n ) ) |
10 |
|
breq2 |
|- ( n = suc m -> ( y ~~ n <-> y ~~ suc m ) ) |
11 |
9 10
|
sylan9bbr |
|- ( ( n = suc m /\ x = y ) -> ( x ~~ n <-> y ~~ suc m ) ) |
12 |
8 11
|
anbi12d |
|- ( ( n = suc m /\ x = y ) -> ( ( x C_ A /\ x ~~ n ) <-> ( y C_ A /\ y ~~ suc m ) ) ) |
13 |
12
|
cbvexdvaw |
|- ( n = suc m -> ( E. x ( x C_ A /\ x ~~ n ) <-> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
14 |
|
0ss |
|- (/) C_ A |
15 |
|
0ex |
|- (/) e. _V |
16 |
15
|
enref |
|- (/) ~~ (/) |
17 |
|
sseq1 |
|- ( x = (/) -> ( x C_ A <-> (/) C_ A ) ) |
18 |
|
breq1 |
|- ( x = (/) -> ( x ~~ (/) <-> (/) ~~ (/) ) ) |
19 |
17 18
|
anbi12d |
|- ( x = (/) -> ( ( x C_ A /\ x ~~ (/) ) <-> ( (/) C_ A /\ (/) ~~ (/) ) ) ) |
20 |
15 19
|
spcev |
|- ( ( (/) C_ A /\ (/) ~~ (/) ) -> E. x ( x C_ A /\ x ~~ (/) ) ) |
21 |
14 16 20
|
mp2an |
|- E. x ( x C_ A /\ x ~~ (/) ) |
22 |
21
|
a1i |
|- ( -. A e. Fin -> E. x ( x C_ A /\ x ~~ (/) ) ) |
23 |
|
ssdif0 |
|- ( A C_ x <-> ( A \ x ) = (/) ) |
24 |
|
eqss |
|- ( x = A <-> ( x C_ A /\ A C_ x ) ) |
25 |
|
breq1 |
|- ( x = A -> ( x ~~ m <-> A ~~ m ) ) |
26 |
25
|
biimpa |
|- ( ( x = A /\ x ~~ m ) -> A ~~ m ) |
27 |
|
rspe |
|- ( ( m e. _om /\ A ~~ m ) -> E. m e. _om A ~~ m ) |
28 |
26 27
|
sylan2 |
|- ( ( m e. _om /\ ( x = A /\ x ~~ m ) ) -> E. m e. _om A ~~ m ) |
29 |
|
isfi |
|- ( A e. Fin <-> E. m e. _om A ~~ m ) |
30 |
28 29
|
sylibr |
|- ( ( m e. _om /\ ( x = A /\ x ~~ m ) ) -> A e. Fin ) |
31 |
30
|
expcom |
|- ( ( x = A /\ x ~~ m ) -> ( m e. _om -> A e. Fin ) ) |
32 |
24 31
|
sylanbr |
|- ( ( ( x C_ A /\ A C_ x ) /\ x ~~ m ) -> ( m e. _om -> A e. Fin ) ) |
33 |
32
|
ex |
|- ( ( x C_ A /\ A C_ x ) -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) |
34 |
23 33
|
sylan2br |
|- ( ( x C_ A /\ ( A \ x ) = (/) ) -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) |
35 |
34
|
expcom |
|- ( ( A \ x ) = (/) -> ( x C_ A -> ( x ~~ m -> ( m e. _om -> A e. Fin ) ) ) ) |
36 |
35
|
3impd |
|- ( ( A \ x ) = (/) -> ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> A e. Fin ) ) |
37 |
36
|
com12 |
|- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( ( A \ x ) = (/) -> A e. Fin ) ) |
38 |
37
|
con3d |
|- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. A e. Fin -> -. ( A \ x ) = (/) ) ) |
39 |
|
bren |
|- ( x ~~ m <-> E. f f : x -1-1-onto-> m ) |
40 |
|
neq0 |
|- ( -. ( A \ x ) = (/) <-> E. z z e. ( A \ x ) ) |
41 |
|
eldifi |
|- ( z e. ( A \ x ) -> z e. A ) |
42 |
41
|
snssd |
|- ( z e. ( A \ x ) -> { z } C_ A ) |
43 |
|
unss |
|- ( ( x C_ A /\ { z } C_ A ) <-> ( x u. { z } ) C_ A ) |
44 |
43
|
biimpi |
|- ( ( x C_ A /\ { z } C_ A ) -> ( x u. { z } ) C_ A ) |
45 |
42 44
|
sylan2 |
|- ( ( x C_ A /\ z e. ( A \ x ) ) -> ( x u. { z } ) C_ A ) |
46 |
45
|
ad2ant2r |
|- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) C_ A ) |
47 |
|
vex |
|- z e. _V |
48 |
|
vex |
|- m e. _V |
49 |
47 48
|
f1osn |
|- { <. z , m >. } : { z } -1-1-onto-> { m } |
50 |
49
|
jctr |
|- ( f : x -1-1-onto-> m -> ( f : x -1-1-onto-> m /\ { <. z , m >. } : { z } -1-1-onto-> { m } ) ) |
51 |
|
eldifn |
|- ( z e. ( A \ x ) -> -. z e. x ) |
52 |
|
disjsn |
|- ( ( x i^i { z } ) = (/) <-> -. z e. x ) |
53 |
51 52
|
sylibr |
|- ( z e. ( A \ x ) -> ( x i^i { z } ) = (/) ) |
54 |
|
nnord |
|- ( m e. _om -> Ord m ) |
55 |
|
orddisj |
|- ( Ord m -> ( m i^i { m } ) = (/) ) |
56 |
54 55
|
syl |
|- ( m e. _om -> ( m i^i { m } ) = (/) ) |
57 |
53 56
|
anim12i |
|- ( ( z e. ( A \ x ) /\ m e. _om ) -> ( ( x i^i { z } ) = (/) /\ ( m i^i { m } ) = (/) ) ) |
58 |
|
f1oun |
|- ( ( ( f : x -1-1-onto-> m /\ { <. z , m >. } : { z } -1-1-onto-> { m } ) /\ ( ( x i^i { z } ) = (/) /\ ( m i^i { m } ) = (/) ) ) -> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
59 |
50 57 58
|
syl2an |
|- ( ( f : x -1-1-onto-> m /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
60 |
|
df-suc |
|- suc m = ( m u. { m } ) |
61 |
|
f1oeq3 |
|- ( suc m = ( m u. { m } ) -> ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) ) |
62 |
60 61
|
ax-mp |
|- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) ) |
63 |
|
vex |
|- f e. _V |
64 |
|
snex |
|- { <. z , m >. } e. _V |
65 |
63 64
|
unex |
|- ( f u. { <. z , m >. } ) e. _V |
66 |
|
f1oeq1 |
|- ( g = ( f u. { <. z , m >. } ) -> ( g : ( x u. { z } ) -1-1-onto-> suc m <-> ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m ) ) |
67 |
65 66
|
spcev |
|- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m -> E. g g : ( x u. { z } ) -1-1-onto-> suc m ) |
68 |
|
bren |
|- ( ( x u. { z } ) ~~ suc m <-> E. g g : ( x u. { z } ) -1-1-onto-> suc m ) |
69 |
67 68
|
sylibr |
|- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> suc m -> ( x u. { z } ) ~~ suc m ) |
70 |
62 69
|
sylbir |
|- ( ( f u. { <. z , m >. } ) : ( x u. { z } ) -1-1-onto-> ( m u. { m } ) -> ( x u. { z } ) ~~ suc m ) |
71 |
59 70
|
syl |
|- ( ( f : x -1-1-onto-> m /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) ~~ suc m ) |
72 |
71
|
adantll |
|- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> ( x u. { z } ) ~~ suc m ) |
73 |
|
vex |
|- x e. _V |
74 |
|
snex |
|- { z } e. _V |
75 |
73 74
|
unex |
|- ( x u. { z } ) e. _V |
76 |
|
sseq1 |
|- ( y = ( x u. { z } ) -> ( y C_ A <-> ( x u. { z } ) C_ A ) ) |
77 |
|
breq1 |
|- ( y = ( x u. { z } ) -> ( y ~~ suc m <-> ( x u. { z } ) ~~ suc m ) ) |
78 |
76 77
|
anbi12d |
|- ( y = ( x u. { z } ) -> ( ( y C_ A /\ y ~~ suc m ) <-> ( ( x u. { z } ) C_ A /\ ( x u. { z } ) ~~ suc m ) ) ) |
79 |
75 78
|
spcev |
|- ( ( ( x u. { z } ) C_ A /\ ( x u. { z } ) ~~ suc m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) |
80 |
46 72 79
|
syl2anc |
|- ( ( ( x C_ A /\ f : x -1-1-onto-> m ) /\ ( z e. ( A \ x ) /\ m e. _om ) ) -> E. y ( y C_ A /\ y ~~ suc m ) ) |
81 |
80
|
expcom |
|- ( ( z e. ( A \ x ) /\ m e. _om ) -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
82 |
81
|
ex |
|- ( z e. ( A \ x ) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
83 |
82
|
exlimiv |
|- ( E. z z e. ( A \ x ) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
84 |
40 83
|
sylbi |
|- ( -. ( A \ x ) = (/) -> ( m e. _om -> ( ( x C_ A /\ f : x -1-1-onto-> m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
85 |
84
|
com13 |
|- ( ( x C_ A /\ f : x -1-1-onto-> m ) -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
86 |
85
|
expcom |
|- ( f : x -1-1-onto-> m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
87 |
86
|
exlimiv |
|- ( E. f f : x -1-1-onto-> m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
88 |
39 87
|
sylbi |
|- ( x ~~ m -> ( x C_ A -> ( m e. _om -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) ) |
89 |
88
|
3imp21 |
|- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. ( A \ x ) = (/) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
90 |
38 89
|
syld |
|- ( ( x C_ A /\ x ~~ m /\ m e. _om ) -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) |
91 |
90
|
3expia |
|- ( ( x C_ A /\ x ~~ m ) -> ( m e. _om -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
92 |
91
|
exlimiv |
|- ( E. x ( x C_ A /\ x ~~ m ) -> ( m e. _om -> ( -. A e. Fin -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
93 |
92
|
com3l |
|- ( m e. _om -> ( -. A e. Fin -> ( E. x ( x C_ A /\ x ~~ m ) -> E. y ( y C_ A /\ y ~~ suc m ) ) ) ) |
94 |
3 6 13 22 93
|
finds2 |
|- ( n e. _om -> ( -. A e. Fin -> E. x ( x C_ A /\ x ~~ n ) ) ) |
95 |
94
|
com12 |
|- ( -. A e. Fin -> ( n e. _om -> E. x ( x C_ A /\ x ~~ n ) ) ) |
96 |
95
|
ralrimiv |
|- ( -. A e. Fin -> A. n e. _om E. x ( x C_ A /\ x ~~ n ) ) |