| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
| 2 |
|
isinf |
|- ( -. A e. Fin -> A. a e. _om E. c ( c C_ A /\ c ~~ a ) ) |
| 3 |
|
breq2 |
|- ( a = ( card ` B ) -> ( c ~~ a <-> c ~~ ( card ` B ) ) ) |
| 4 |
3
|
anbi2d |
|- ( a = ( card ` B ) -> ( ( c C_ A /\ c ~~ a ) <-> ( c C_ A /\ c ~~ ( card ` B ) ) ) ) |
| 5 |
4
|
exbidv |
|- ( a = ( card ` B ) -> ( E. c ( c C_ A /\ c ~~ a ) <-> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) ) |
| 6 |
5
|
rspcva |
|- ( ( ( card ` B ) e. _om /\ A. a e. _om E. c ( c C_ A /\ c ~~ a ) ) -> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) |
| 7 |
1 2 6
|
syl2anr |
|- ( ( -. A e. Fin /\ B e. Fin ) -> E. c ( c C_ A /\ c ~~ ( card ` B ) ) ) |
| 8 |
|
simprr |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> c ~~ ( card ` B ) ) |
| 9 |
|
ficardid |
|- ( B e. Fin -> ( card ` B ) ~~ B ) |
| 10 |
9
|
ad2antlr |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( card ` B ) ~~ B ) |
| 11 |
|
entr |
|- ( ( c ~~ ( card ` B ) /\ ( card ` B ) ~~ B ) -> c ~~ B ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> c ~~ B ) |
| 13 |
12
|
ensymd |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> B ~~ c ) |
| 14 |
|
bren |
|- ( B ~~ c <-> E. f f : B -1-1-onto-> c ) |
| 15 |
13 14
|
sylib |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> E. f f : B -1-1-onto-> c ) |
| 16 |
|
f1of1 |
|- ( f : B -1-1-onto-> c -> f : B -1-1-> c ) |
| 17 |
|
simplrl |
|- ( ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) /\ f : B -1-1-onto-> c ) -> c C_ A ) |
| 18 |
|
f1ss |
|- ( ( f : B -1-1-> c /\ c C_ A ) -> f : B -1-1-> A ) |
| 19 |
16 17 18
|
syl2an2 |
|- ( ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) /\ f : B -1-1-onto-> c ) -> f : B -1-1-> A ) |
| 20 |
19
|
ex |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( f : B -1-1-onto-> c -> f : B -1-1-> A ) ) |
| 21 |
20
|
eximdv |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> ( E. f f : B -1-1-onto-> c -> E. f f : B -1-1-> A ) ) |
| 22 |
15 21
|
mpd |
|- ( ( ( -. A e. Fin /\ B e. Fin ) /\ ( c C_ A /\ c ~~ ( card ` B ) ) ) -> E. f f : B -1-1-> A ) |
| 23 |
7 22
|
exlimddv |
|- ( ( -. A e. Fin /\ B e. Fin ) -> E. f f : B -1-1-> A ) |