| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isinito2.1 |
|- .1. = ( SetCat ` 1o ) |
| 2 |
|
isinito2.f |
|- F = ( ( 1st ` ( .1. DiagFunc C ) ) ` (/) ) |
| 3 |
|
isinito2lem.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
isinito2lem.i |
|- ( ph -> I e. ( Base ` C ) ) |
| 5 |
|
reutru |
|- ( E! f f e. ( I ( Hom ` C ) x ) <-> E! f e. ( I ( Hom ` C ) x ) T. ) |
| 6 |
|
0ex |
|- (/) e. _V |
| 7 |
|
eqeq1 |
|- ( y = (/) -> ( y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 8 |
7
|
reubidv |
|- ( y = (/) -> ( E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> E! f e. ( I ( Hom ` C ) x ) (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 9 |
6 8
|
ralsn |
|- ( A. y e. { (/) } E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> E! f e. ( I ( Hom ` C ) x ) (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) |
| 10 |
|
eqid |
|- ( .1. DiagFunc C ) = ( .1. DiagFunc C ) |
| 11 |
|
setc1oterm |
|- ( SetCat ` 1o ) e. TermCat |
| 12 |
1 11
|
eqeltri |
|- .1. e. TermCat |
| 13 |
12
|
a1i |
|- ( ph -> .1. e. TermCat ) |
| 14 |
13
|
termccd |
|- ( ph -> .1. e. Cat ) |
| 15 |
1
|
setc1obas |
|- 1o = ( Base ` .1. ) |
| 16 |
|
0lt1o |
|- (/) e. 1o |
| 17 |
16
|
a1i |
|- ( ph -> (/) e. 1o ) |
| 18 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 19 |
10 14 3 15 17 2 18 4
|
diag11 |
|- ( ph -> ( ( 1st ` F ) ` I ) = (/) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` I ) = (/) ) |
| 21 |
20
|
opeq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> <. (/) , ( ( 1st ` F ) ` I ) >. = <. (/) , (/) >. ) |
| 22 |
14
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> .1. e. Cat ) |
| 23 |
3
|
adantr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> C e. Cat ) |
| 24 |
16
|
a1i |
|- ( ( ph /\ x e. ( Base ` C ) ) -> (/) e. 1o ) |
| 25 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` C ) ) -> x e. ( Base ` C ) ) |
| 26 |
10 22 23 15 24 2 18 25
|
diag11 |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( ( 1st ` F ) ` x ) = (/) ) |
| 27 |
21 26
|
oveq12d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) = ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } (/) ) ) |
| 28 |
|
snex |
|- { <. (/) , (/) , (/) >. } e. _V |
| 29 |
28
|
ovsn2 |
|- ( <. (/) , (/) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } (/) ) = { <. (/) , (/) , (/) >. } |
| 30 |
27 29
|
eqtrdi |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) = { <. (/) , (/) , (/) >. } ) |
| 31 |
30
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) = { <. (/) , (/) , (/) >. } ) |
| 32 |
12
|
a1i |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> .1. e. TermCat ) |
| 33 |
32
|
termccd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> .1. e. Cat ) |
| 34 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> C e. Cat ) |
| 35 |
16
|
a1i |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> (/) e. 1o ) |
| 36 |
4
|
ad2antrr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> I e. ( Base ` C ) ) |
| 37 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 38 |
|
eqid |
|- ( Id ` .1. ) = ( Id ` .1. ) |
| 39 |
|
simplr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> x e. ( Base ` C ) ) |
| 40 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> f e. ( I ( Hom ` C ) x ) ) |
| 41 |
10 33 34 15 35 2 18 36 37 38 39 40
|
diag12 |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> ( ( I ( 2nd ` F ) x ) ` f ) = ( ( Id ` .1. ) ` (/) ) ) |
| 42 |
1 38
|
setc1oid |
|- ( ( Id ` .1. ) ` (/) ) = (/) |
| 43 |
41 42
|
eqtrdi |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> ( ( I ( 2nd ` F ) x ) ` f ) = (/) ) |
| 44 |
|
eqidd |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> (/) = (/) ) |
| 45 |
31 43 44
|
oveq123d |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) = ( (/) { <. (/) , (/) , (/) >. } (/) ) ) |
| 46 |
6
|
ovsn2 |
|- ( (/) { <. (/) , (/) , (/) >. } (/) ) = (/) |
| 47 |
45 46
|
eqtr2di |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) |
| 48 |
|
tbtru |
|- ( (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> ( (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> T. ) ) |
| 49 |
47 48
|
sylib |
|- ( ( ( ph /\ x e. ( Base ` C ) ) /\ f e. ( I ( Hom ` C ) x ) ) -> ( (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> T. ) ) |
| 50 |
49
|
reubidva |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( E! f e. ( I ( Hom ` C ) x ) (/) = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> E! f e. ( I ( Hom ` C ) x ) T. ) ) |
| 51 |
9 50
|
bitr2id |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( E! f e. ( I ( Hom ` C ) x ) T. <-> A. y e. { (/) } E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 52 |
26
|
oveq2d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) ) |
| 53 |
|
1oex |
|- 1o e. _V |
| 54 |
53
|
ovsn2 |
|- ( (/) { <. (/) , (/) , 1o >. } (/) ) = 1o |
| 55 |
|
df1o2 |
|- 1o = { (/) } |
| 56 |
54 55
|
eqtri |
|- ( (/) { <. (/) , (/) , 1o >. } (/) ) = { (/) } |
| 57 |
52 56
|
eqtrdi |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) = { (/) } ) |
| 58 |
57
|
raleqdv |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( A. y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) <-> A. y e. { (/) } E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 59 |
51 58
|
bitr4d |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( E! f e. ( I ( Hom ` C ) x ) T. <-> A. y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 60 |
5 59
|
bitrid |
|- ( ( ph /\ x e. ( Base ` C ) ) -> ( E! f f e. ( I ( Hom ` C ) x ) <-> A. y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 61 |
60
|
ralbidva |
|- ( ph -> ( A. x e. ( Base ` C ) E! f f e. ( I ( Hom ` C ) x ) <-> A. x e. ( Base ` C ) A. y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 62 |
18 37 3 4
|
isinito |
|- ( ph -> ( I e. ( InitO ` C ) <-> A. x e. ( Base ` C ) E! f f e. ( I ( Hom ` C ) x ) ) ) |
| 63 |
1
|
setc1ohomfval |
|- { <. (/) , (/) , 1o >. } = ( Hom ` .1. ) |
| 64 |
1
|
setc1ocofval |
|- { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } = ( comp ` .1. ) |
| 65 |
1 2 3
|
funcsetc1ocl |
|- ( ph -> F e. ( C Func .1. ) ) |
| 66 |
65
|
func1st2nd |
|- ( ph -> ( 1st ` F ) ( C Func .1. ) ( 2nd ` F ) ) |
| 67 |
19
|
oveq2d |
|- ( ph -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = ( (/) { <. (/) , (/) , 1o >. } (/) ) ) |
| 68 |
67 54
|
eqtrdi |
|- ( ph -> ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) = 1o ) |
| 69 |
16 68
|
eleqtrrid |
|- ( ph -> (/) e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` I ) ) ) |
| 70 |
18 15 37 63 64 17 66 4 69
|
isup |
|- ( ph -> ( I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) (/) <-> A. x e. ( Base ` C ) A. y e. ( (/) { <. (/) , (/) , 1o >. } ( ( 1st ` F ) ` x ) ) E! f e. ( I ( Hom ` C ) x ) y = ( ( ( I ( 2nd ` F ) x ) ` f ) ( <. (/) , ( ( 1st ` F ) ` I ) >. { <. <. (/) , (/) >. , (/) , { <. (/) , (/) , (/) >. } >. } ( ( 1st ` F ) ` x ) ) (/) ) ) ) |
| 71 |
61 62 70
|
3bitr4d |
|- ( ph -> ( I e. ( InitO ` C ) <-> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) (/) ) ) |
| 72 |
65
|
up1st2ndb |
|- ( ph -> ( I ( F ( C UP .1. ) (/) ) (/) <-> I ( <. ( 1st ` F ) , ( 2nd ` F ) >. ( C UP .1. ) (/) ) (/) ) ) |
| 73 |
71 72
|
bitr4d |
|- ( ph -> ( I e. ( InitO ` C ) <-> I ( F ( C UP .1. ) (/) ) (/) ) ) |