| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							invfval.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							invfval.n | 
							 |-  N = ( Inv ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							invfval.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 4 | 
							
								
							 | 
							invfval.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 5 | 
							
								
							 | 
							invfval.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							invfval.s | 
							 |-  S = ( Sect ` C )  | 
						
						
							| 7 | 
							
								1 2 3 4 5 6
							 | 
							invfval | 
							 |-  ( ph -> ( X N Y ) = ( ( X S Y ) i^i `' ( Y S X ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							breqd | 
							 |-  ( ph -> ( F ( X N Y ) G <-> F ( ( X S Y ) i^i `' ( Y S X ) ) G ) )  | 
						
						
							| 9 | 
							
								
							 | 
							brin | 
							 |-  ( F ( ( X S Y ) i^i `' ( Y S X ) ) G <-> ( F ( X S Y ) G /\ F `' ( Y S X ) G ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							bitrdi | 
							 |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ F `' ( Y S X ) G ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` C ) = ( Id ` C )  | 
						
						
							| 14 | 
							
								1 11 12 13 6 3 5 4
							 | 
							sectss | 
							 |-  ( ph -> ( Y S X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							relxp | 
							 |-  Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) )  | 
						
						
							| 16 | 
							
								
							 | 
							relss | 
							 |-  ( ( Y S X ) C_ ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> ( Rel ( ( Y ( Hom ` C ) X ) X. ( X ( Hom ` C ) Y ) ) -> Rel ( Y S X ) ) )  | 
						
						
							| 17 | 
							
								14 15 16
							 | 
							mpisyl | 
							 |-  ( ph -> Rel ( Y S X ) )  | 
						
						
							| 18 | 
							
								
							 | 
							relbrcnvg | 
							 |-  ( Rel ( Y S X ) -> ( F `' ( Y S X ) G <-> G ( Y S X ) F ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							 |-  ( ph -> ( F `' ( Y S X ) G <-> G ( Y S X ) F ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							anbi2d | 
							 |-  ( ph -> ( ( F ( X S Y ) G /\ F `' ( Y S X ) G ) <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) )  | 
						
						
							| 21 | 
							
								10 20
							 | 
							bitrd | 
							 |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) )  |