| Step | Hyp | Ref | Expression | 
						
							| 1 |  | irred.1 |  |-  B = ( Base ` R ) | 
						
							| 2 |  | irred.2 |  |-  U = ( Unit ` R ) | 
						
							| 3 |  | irred.3 |  |-  I = ( Irred ` R ) | 
						
							| 4 |  | irred.4 |  |-  N = ( B \ U ) | 
						
							| 5 |  | irred.5 |  |-  .x. = ( .r ` R ) | 
						
							| 6 |  | elfvdm |  |-  ( X e. ( Irred ` R ) -> R e. dom Irred ) | 
						
							| 7 | 6 3 | eleq2s |  |-  ( X e. I -> R e. dom Irred ) | 
						
							| 8 | 7 | elexd |  |-  ( X e. I -> R e. _V ) | 
						
							| 9 |  | eldifi |  |-  ( X e. ( B \ U ) -> X e. B ) | 
						
							| 10 | 9 4 | eleq2s |  |-  ( X e. N -> X e. B ) | 
						
							| 11 | 10 1 | eleqtrdi |  |-  ( X e. N -> X e. ( Base ` R ) ) | 
						
							| 12 | 11 | elfvexd |  |-  ( X e. N -> R e. _V ) | 
						
							| 13 | 12 | adantr |  |-  ( ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) -> R e. _V ) | 
						
							| 14 |  | fvex |  |-  ( Base ` r ) e. _V | 
						
							| 15 |  | difexg |  |-  ( ( Base ` r ) e. _V -> ( ( Base ` r ) \ ( Unit ` r ) ) e. _V ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( r = R -> ( ( Base ` r ) \ ( Unit ` r ) ) e. _V ) | 
						
							| 17 |  | simpr |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> b = ( ( Base ` r ) \ ( Unit ` r ) ) ) | 
						
							| 18 |  | simpl |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> r = R ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Base ` r ) = ( Base ` R ) ) | 
						
							| 20 | 19 1 | eqtr4di |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Base ` r ) = B ) | 
						
							| 21 | 18 | fveq2d |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Unit ` r ) = ( Unit ` R ) ) | 
						
							| 22 | 21 2 | eqtr4di |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( Unit ` r ) = U ) | 
						
							| 23 | 20 22 | difeq12d |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( Base ` r ) \ ( Unit ` r ) ) = ( B \ U ) ) | 
						
							| 24 | 23 4 | eqtr4di |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( Base ` r ) \ ( Unit ` r ) ) = N ) | 
						
							| 25 | 17 24 | eqtrd |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> b = N ) | 
						
							| 26 | 18 | fveq2d |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( .r ` r ) = ( .r ` R ) ) | 
						
							| 27 | 26 5 | eqtr4di |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( .r ` r ) = .x. ) | 
						
							| 28 | 27 | oveqd |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( x ( .r ` r ) y ) = ( x .x. y ) ) | 
						
							| 29 | 28 | neeq1d |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( ( x ( .r ` r ) y ) =/= z <-> ( x .x. y ) =/= z ) ) | 
						
							| 30 | 25 29 | raleqbidv |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( A. y e. b ( x ( .r ` r ) y ) =/= z <-> A. y e. N ( x .x. y ) =/= z ) ) | 
						
							| 31 | 25 30 | raleqbidv |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> ( A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z <-> A. x e. N A. y e. N ( x .x. y ) =/= z ) ) | 
						
							| 32 | 25 31 | rabeqbidv |  |-  ( ( r = R /\ b = ( ( Base ` r ) \ ( Unit ` r ) ) ) -> { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) | 
						
							| 33 | 16 32 | csbied |  |-  ( r = R -> [_ ( ( Base ` r ) \ ( Unit ` r ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) | 
						
							| 34 |  | df-irred |  |-  Irred = ( r e. _V |-> [_ ( ( Base ` r ) \ ( Unit ` r ) ) / b ]_ { z e. b | A. x e. b A. y e. b ( x ( .r ` r ) y ) =/= z } ) | 
						
							| 35 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 36 | 1 35 | eqeltri |  |-  B e. _V | 
						
							| 37 | 36 | difexi |  |-  ( B \ U ) e. _V | 
						
							| 38 | 4 37 | eqeltri |  |-  N e. _V | 
						
							| 39 | 38 | rabex |  |-  { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } e. _V | 
						
							| 40 | 33 34 39 | fvmpt |  |-  ( R e. _V -> ( Irred ` R ) = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) | 
						
							| 41 | 3 40 | eqtrid |  |-  ( R e. _V -> I = { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) | 
						
							| 42 | 41 | eleq2d |  |-  ( R e. _V -> ( X e. I <-> X e. { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } ) ) | 
						
							| 43 |  | neeq2 |  |-  ( z = X -> ( ( x .x. y ) =/= z <-> ( x .x. y ) =/= X ) ) | 
						
							| 44 | 43 | 2ralbidv |  |-  ( z = X -> ( A. x e. N A. y e. N ( x .x. y ) =/= z <-> A. x e. N A. y e. N ( x .x. y ) =/= X ) ) | 
						
							| 45 | 44 | elrab |  |-  ( X e. { z e. N | A. x e. N A. y e. N ( x .x. y ) =/= z } <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) | 
						
							| 46 | 42 45 | bitrdi |  |-  ( R e. _V -> ( X e. I <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) ) | 
						
							| 47 | 8 13 46 | pm5.21nii |  |-  ( X e. I <-> ( X e. N /\ A. x e. N A. y e. N ( x .x. y ) =/= X ) ) |