Step |
Hyp |
Ref |
Expression |
1 |
|
kgentop |
|- ( J e. ran kGen -> J e. Top ) |
2 |
|
kgenidm |
|- ( J e. ran kGen -> ( kGen ` J ) = J ) |
3 |
|
eqimss |
|- ( ( kGen ` J ) = J -> ( kGen ` J ) C_ J ) |
4 |
2 3
|
syl |
|- ( J e. ran kGen -> ( kGen ` J ) C_ J ) |
5 |
1 4
|
jca |
|- ( J e. ran kGen -> ( J e. Top /\ ( kGen ` J ) C_ J ) ) |
6 |
|
simpr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) C_ J ) |
7 |
|
kgenss |
|- ( J e. Top -> J C_ ( kGen ` J ) ) |
8 |
7
|
adantr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> J C_ ( kGen ` J ) ) |
9 |
6 8
|
eqssd |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) = J ) |
10 |
|
kgenf |
|- kGen : Top --> Top |
11 |
|
ffn |
|- ( kGen : Top --> Top -> kGen Fn Top ) |
12 |
10 11
|
ax-mp |
|- kGen Fn Top |
13 |
|
fnfvelrn |
|- ( ( kGen Fn Top /\ J e. Top ) -> ( kGen ` J ) e. ran kGen ) |
14 |
12 13
|
mpan |
|- ( J e. Top -> ( kGen ` J ) e. ran kGen ) |
15 |
14
|
adantr |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> ( kGen ` J ) e. ran kGen ) |
16 |
9 15
|
eqeltrrd |
|- ( ( J e. Top /\ ( kGen ` J ) C_ J ) -> J e. ran kGen ) |
17 |
5 16
|
impbii |
|- ( J e. ran kGen <-> ( J e. Top /\ ( kGen ` J ) C_ J ) ) |