Step |
Hyp |
Ref |
Expression |
1 |
|
islat.b |
|- B = ( Base ` K ) |
2 |
|
islat.j |
|- .\/ = ( join ` K ) |
3 |
|
islat.m |
|- ./\ = ( meet ` K ) |
4 |
|
fveq2 |
|- ( l = K -> ( join ` l ) = ( join ` K ) ) |
5 |
4 2
|
eqtr4di |
|- ( l = K -> ( join ` l ) = .\/ ) |
6 |
5
|
dmeqd |
|- ( l = K -> dom ( join ` l ) = dom .\/ ) |
7 |
|
fveq2 |
|- ( l = K -> ( Base ` l ) = ( Base ` K ) ) |
8 |
7 1
|
eqtr4di |
|- ( l = K -> ( Base ` l ) = B ) |
9 |
8
|
sqxpeqd |
|- ( l = K -> ( ( Base ` l ) X. ( Base ` l ) ) = ( B X. B ) ) |
10 |
6 9
|
eqeq12d |
|- ( l = K -> ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) <-> dom .\/ = ( B X. B ) ) ) |
11 |
|
fveq2 |
|- ( l = K -> ( meet ` l ) = ( meet ` K ) ) |
12 |
11 3
|
eqtr4di |
|- ( l = K -> ( meet ` l ) = ./\ ) |
13 |
12
|
dmeqd |
|- ( l = K -> dom ( meet ` l ) = dom ./\ ) |
14 |
13 9
|
eqeq12d |
|- ( l = K -> ( dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) <-> dom ./\ = ( B X. B ) ) ) |
15 |
10 14
|
anbi12d |
|- ( l = K -> ( ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) /\ dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) ) <-> ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |
16 |
|
df-lat |
|- Lat = { l e. Poset | ( dom ( join ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) /\ dom ( meet ` l ) = ( ( Base ` l ) X. ( Base ` l ) ) ) } |
17 |
15 16
|
elrab2 |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom .\/ = ( B X. B ) /\ dom ./\ = ( B X. B ) ) ) ) |