Step |
Hyp |
Ref |
Expression |
1 |
|
ldilset.b |
|- B = ( Base ` K ) |
2 |
|
ldilset.l |
|- .<_ = ( le ` K ) |
3 |
|
ldilset.h |
|- H = ( LHyp ` K ) |
4 |
|
ldilset.i |
|- I = ( LAut ` K ) |
5 |
|
ldilset.d |
|- D = ( ( LDil ` K ) ` W ) |
6 |
1 2 3 4 5
|
ldilset |
|- ( ( K e. C /\ W e. H ) -> D = { f e. I | A. x e. B ( x .<_ W -> ( f ` x ) = x ) } ) |
7 |
6
|
eleq2d |
|- ( ( K e. C /\ W e. H ) -> ( F e. D <-> F e. { f e. I | A. x e. B ( x .<_ W -> ( f ` x ) = x ) } ) ) |
8 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
9 |
8
|
eqeq1d |
|- ( f = F -> ( ( f ` x ) = x <-> ( F ` x ) = x ) ) |
10 |
9
|
imbi2d |
|- ( f = F -> ( ( x .<_ W -> ( f ` x ) = x ) <-> ( x .<_ W -> ( F ` x ) = x ) ) ) |
11 |
10
|
ralbidv |
|- ( f = F -> ( A. x e. B ( x .<_ W -> ( f ` x ) = x ) <-> A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) ) |
12 |
11
|
elrab |
|- ( F e. { f e. I | A. x e. B ( x .<_ W -> ( f ` x ) = x ) } <-> ( F e. I /\ A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) ) |
13 |
7 12
|
bitrdi |
|- ( ( K e. C /\ W e. H ) -> ( F e. D <-> ( F e. I /\ A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) ) ) |