Metamath Proof Explorer


Theorem islhp2

Description: The predicate "is a co-atom (lattice hyperplane)". (Contributed by NM, 18-May-2012)

Ref Expression
Hypotheses lhpset.b
|- B = ( Base ` K )
lhpset.u
|- .1. = ( 1. ` K )
lhpset.c
|- C = ( 
lhpset.h
|- H = ( LHyp ` K )
Assertion islhp2
|- ( ( K e. A /\ W e. B ) -> ( W e. H <-> W C .1. ) )

Proof

Step Hyp Ref Expression
1 lhpset.b
 |-  B = ( Base ` K )
2 lhpset.u
 |-  .1. = ( 1. ` K )
3 lhpset.c
 |-  C = ( 
4 lhpset.h
 |-  H = ( LHyp ` K )
5 1 2 3 4 islhp
 |-  ( K e. A -> ( W e. H <-> ( W e. B /\ W C .1. ) ) )
6 5 baibd
 |-  ( ( K e. A /\ W e. B ) -> ( W e. H <-> W C .1. ) )