Step |
Hyp |
Ref |
Expression |
1 |
|
isline2.j |
|- .\/ = ( join ` K ) |
2 |
|
isline2.a |
|- A = ( Atoms ` K ) |
3 |
|
isline2.n |
|- N = ( Lines ` K ) |
4 |
|
isline2.m |
|- M = ( pmap ` K ) |
5 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
6 |
5 1 2 3
|
isline |
|- ( K e. Lat -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
7 |
|
simpl |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> K e. Lat ) |
8 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
9 |
8 2
|
atbase |
|- ( p e. A -> p e. ( Base ` K ) ) |
10 |
9
|
ad2antrl |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> p e. ( Base ` K ) ) |
11 |
8 2
|
atbase |
|- ( q e. A -> q e. ( Base ` K ) ) |
12 |
11
|
ad2antll |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> q e. ( Base ` K ) ) |
13 |
8 1
|
latjcl |
|- ( ( K e. Lat /\ p e. ( Base ` K ) /\ q e. ( Base ` K ) ) -> ( p .\/ q ) e. ( Base ` K ) ) |
14 |
7 10 12 13
|
syl3anc |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( p .\/ q ) e. ( Base ` K ) ) |
15 |
8 5 2 4
|
pmapval |
|- ( ( K e. Lat /\ ( p .\/ q ) e. ( Base ` K ) ) -> ( M ` ( p .\/ q ) ) = { r e. A | r ( le ` K ) ( p .\/ q ) } ) |
16 |
14 15
|
syldan |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( M ` ( p .\/ q ) ) = { r e. A | r ( le ` K ) ( p .\/ q ) } ) |
17 |
16
|
eqeq2d |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( X = ( M ` ( p .\/ q ) ) <-> X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) |
18 |
17
|
anbi2d |
|- ( ( K e. Lat /\ ( p e. A /\ q e. A ) ) -> ( ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) <-> ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
19 |
18
|
2rexbidva |
|- ( K e. Lat -> ( E. p e. A E. q e. A ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) <-> E. p e. A E. q e. A ( p =/= q /\ X = { r e. A | r ( le ` K ) ( p .\/ q ) } ) ) ) |
20 |
6 19
|
bitr4d |
|- ( K e. Lat -> ( X e. N <-> E. p e. A E. q e. A ( p =/= q /\ X = ( M ` ( p .\/ q ) ) ) ) ) |